531 resultados para American Electrochemical Society


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The applications of organic semiconductors in complex circuitry such as printed CMOS-like logic circuits demand miniaturization of the active structures to the submicrometric and nanoscale level while enhancing or at least preserving the charge transport properties upon processing. Here, we addressed this issue by using a wet lithographic technique, which exploits and enhances the molecular order in polymers by spatial confinement, to fabricate ambipolar organic field effect transistors and inverter circuits based on nanostructured single component ambipolar polymeric semiconductor. In our devices, the current flows through a precisely defined array of nanostripes made of a highly ordered diketopyrrolopyrrole-benzothiadiazole copolymer with high charge carrier mobility (1.45 cm2 V-1 s-1 for electrons and 0.70 cm2 V-1 s-1 for holes). Finally, we demonstrated the functionality of the ambipolar nanostripe transistors by assembling them into an inverter circuit that exhibits a gain (105) comparable to inverters based on single crystal semiconductors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A series of four novel n-type molecules has been synthesized. Unlike previous approaches, the end group of these molecules was fixed and the molecular core was varied. The resulting materials were thoroughly analyzed. Electronic properties were derived from photoemission spectroscopy, optical properties were derived with the help of optical spectroscopy, and the structure of thin films on Au(111) was derived by scanning tunneling microscopy (STM). In addition, prototypical organic field-effect transistors (OFETs) (forming n-channels in OFETs) have been fabricated and tested. The correlation between the device performance of the respective OFETs (i.e., electron mobility) and their electronic as well as structural properties was investigated. It turned out that a combination of beneficial electronic and structural properties provides the best results. These findings are important for the design of new materials for future device applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

There has been significant progress in the past 2 decades in the field of organic and polymer thin-film transistors. In this paper, we report a combination of stable materials, device architecture, and process conditions that resulted in a patterned gate, small channel length (<5 μm) device that possesses a scaled field-induced conductivity in air that is higher than any organic/polymer transistor reported thus far. The operating voltage is below 10 V; the on-off ratio is high; and the active materials are solution-processable. The semiconducting polymer is a new donor-acceptor polymer with furan-substituted diketopyrrolopyrrole and thienyl-vinylene-thienyl building blocks in the conjugated backbone. One of the major striking features of our work is that the patterned-gate device architecture is suitable for practical applications. We also propose a figure of merit to meaningfully compare polymer/organic transistor performance that takes into account mobility and operating voltage. With this figure of merit, we compare leading organic and polymer transistors that have been hitherto reported. The material and device architecture have shown very high mobility and low operating voltage for such short channel length (below 5 μm) organic/polymer transistors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A donor-acceptor polymer semiconductor, PDQT, comprising diketopyrrolopyrrole (DPP) and β-unsubstituted quaterthiophene (QT) for organic thin film transistors (OTFTs) is reported. This polymer forms ordered layer-by-layer lamellar packing with an edge-on orientation in thin films even without thermal annealing. The strong intermolecular interactions arising from the fused aromatic DPP moiety and the DPP-QT donor-acceptor interaction facilitate the spontaneous self-assembly of the polymer chains into close proximity and form a large π-π overlap, which are favorable for intermolecular charge hopping. The well-interconnected crystalline grains form efficient intergranular charge transport pathways. The desirable chemical, electronic, and morphological structures of PDQT bring about high hole mobility of up to 0.97 cm2/(V·s) in OTFTs with polymer thin films annealed at a mild temperature of 100 °C and similarly high mobility of 0.89 cm2/(V·s) for polymer thin films even without thermal annealing.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report the Heck coupling of 2-vinyl-4,5-dicyanoimidazole (vinazene) with selected di- and trihalo aromatics in an effort to prepare linear and branched electron-accepting conjugated materials for application in organic electronics. By selecting the suitable halo-aromatic moiety, it is possible to tune the HOMO - LUMO energy levels, absorption, and emission properties for a specific application. In this regard, materials with strong photoluminescence from blue → green → red are reported that may have potential application in organic light-emitting diodes (OLEDs). Furthermore, derivatives with strong absorption in the visible spectrum, coupled with favorable HOMO-LUMO levels, have been used to prepare promising organic photovoltaic devices (OPVs) when combined with commercially available semiconducting donor polymers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report here the synthesis, characterization, and organic thin-film transistor (OTFT) mobilities of 4,7-bis(5-(5-hexylthiophen-2-yl)thiophen-2-yl) benzo[1,2,5]thiadiazole (DH-BTZ-4T). DH-BTZ-4T was prepared in one high-yield step from commercially available materials using Suzuki chemistry and purified by column chromatography. OTFTs with hole mobilities of 0.17 cm2/(Vs) and on/off current ratios of 1 × 105 were prepared from DH-BTZ-4T active layers deposited by vacuum deposition. As DH-BTZ-4T is soluble in common solvents, solution processed devices were also prepared by spin coating yielding preliminary mobilities of 6.0 × 10-3 cm 2/(Vs). The promising mobilities and low band gap (1.90 eV) coupled with solution processability and ambient stability makes this material an excellent candidate for application in organic electronics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

4-Hexylbithienopyridine has been prepared as a novel electron-accepting monomer for conjugated polymers. To test its electronic properties, alternating copolymers with fluorene and indenofluorene polymers have been prepared. The copolymers displayed reduction potentials about 0.5 V lower than for the corresponding fluorene and indenofluorene homopolymers, indicating much improved electron-accepting properties. Analysis of the microscopic morphology of thin films of the copolymers by AFM shows that they lack the extensive supramolecular order seen with the homopolymers, which is attributed to the bithienopyridine units disrupting the π-stacking. LEDs using these polymers as the emitting layer produce blue-green emission with low turn-on voltages with aluminum electrodes confirming their improved electron affinity. The indenofluorene copolymer displayed an irreversible red shift in emission at high voltages, which is attributed to oxidation of the indenofluorene units. This red shift occurred at higher potentials than for indenofluorene homopolymers in LEDs, suggesting that the heterocyclic moieties offer some protection against electrically promoted oxidation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We consider a discrete agent-based model on a one-dimensional lattice, where each agent occupies L sites and attempts movements over a distance of d lattice sites. Agents obey a strict simple exclusion rule. A discrete-time master equation is derived using a mean-field approximation and careful probability arguments. In the continuum limit, nonlinear diffusion equations that describe the average agent occupancy are obtained. Averaged discrete simulation data are generated and shown to compare very well with the solution to the derived nonlinear diffusion equations. This framework allows us to approach a lattice-free result using all the advantages of lattice methods. Since different cell types have different shapes and speeds of movement, this work offers insight into population-level behavior of collective cellular motion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We consider a discrete agent-based model on a one-dimensional lattice and a two-dimensional square lattice, where each agent is a dimer occupying two sites. Agents move by vacating one occupied site in favor of a nearest-neighbor site and obey either a strict simple exclusion rule or a weaker constraint that permits partial overlaps between dimers. Using indicator variables and careful probability arguments, a discrete-time master equation for these processes is derived systematically within a mean-field approximation. In the continuum limit, nonlinear diffusion equations that describe the average agent occupancy of the dimer population are obtained. In addition, we show that multiple species of interacting subpopulations give rise to advection-diffusion equations. Averaged discrete simulation data compares very well with the solution to the continuum partial differential equation models. Since many cell types are elongated rather than circular, this work offers insight into population-level behavior of collective cellular motion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A discrete agent-based model on a periodic lattice of arbitrary dimension is considered. Agents move to nearest-neighbor sites by a motility mechanism accounting for general interactions, which may include volume exclusion. The partial differential equation describing the average occupancy of the agent population is derived systematically. A diffusion equation arises for all types of interactions and is nonlinear except for the simplest interactions. In addition, multiple species of interacting subpopulations give rise to an advection-diffusion equation for each subpopulation. This work extends and generalizes previous specific results, providing a construction method for determining the transport coefficients in terms of a single conditional transition probability, which depends on the occupancy of sites in an influence region. These coefficients characterize the diffusion of agents in a crowded environment in biological and physical processes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Computational models in physiology often integrate functional and structural information from a large range of spatio-temporal scales from the ionic to the whole organ level. Their sophistication raises both expectations and scepticism concerning how computational methods can improve our understanding of living organisms and also how they can reduce, replace and refine animal experiments. A fundamental requirement to fulfil these expectations and achieve the full potential of computational physiology is a clear understanding of what models represent and how they can be validated. The present study aims at informing strategies for validation by elucidating the complex interrelations between experiments, models and simulations in cardiac electrophysiology. We describe the processes, data and knowledge involved in the construction of whole ventricular multiscale models of cardiac electrophysiology. Our analysis reveals that models, simulations, and experiments are intertwined, in an assemblage that is a system itself, namely the model-simulation-experiment (MSE) system. Validation must therefore take into account the complex interplay between models, simulations and experiments. Key points for developing strategies for validation are: 1) understanding sources of bio-variability is crucial to the comparison between simulation and experimental results; 2) robustness of techniques and tools is a pre-requisite to conducting physiological investigations using the MSE system; 3) definition and adoption of standards facilitates interoperability of experiments, models and simulations; 4) physiological validation must be understood as an iterative process that defines the specific aspects of electrophysiology the MSE system targets, and is driven by advancements in experimental and computational methods and the combination of both.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The myofibrillar protein synthesis (MPS) response to resistance exercise (REX) and protein ingestion during energy deficit (ED) is unknown. We determined, in young men (n=8) and women (n=7), protein signaling, resting post-absorptive MPS during energy balance [EB: 45 kcal∙(kg FFM∙d)-1] and after 5d of ED [30 kcal∙(kg FFM∙d)-1] as well as MPS while in ED after acute REX in the fasted state and with the ingestion of whey protein (15 and 30 g). Post-absorptive rates of MPS were 27% lower in ED than EB (P<0.001), but REX stimulated MPS to rates equal to EB. Ingestion of 15 and 30 g of protein after REX in ED increased MPS ~16 and ~34% above resting EB, (P<0.02). p70 S6Kthr389 phosphorylation increased above EB only with combined exercise and protein intake (~2-7 fold; P<0.05). In conclusion, short-term ED reduces post-absorptive MPS, however, a bout of REX in ED restores MPS to values observed at rest in EB. The ingestion of protein after REX further increases MPS above resting EB in a dose-dependent manner. We conclude that combining REX with increased protein availability after exercise enhances rates of skeletal muscle protein synthesis during short term ED and could, in the long term, preserve muscle mass.