493 resultados para 53-418B
Neoliberal social inclusion? The agenda of the Australian Universities Community Engagement Alliance
Resumo:
University–community engagement (UCE) represents a hybrid discourse and a set of practices within contemporary higher education. As a modality of research and teaching, ‘engagement’ denotes the process of universities forming partnerships with external communities for the promised generation of mutually beneficial and socially responsive knowledge, leading to enhanced economic, social and cultural developments. A critical discourse analysis (Fairclough 2003. Analysing Discourse: Textual analysis for social research. London: Routledge) of the Australian Universities Community Engagement Alliance’s (AUCEA) ‘Position Paper’(2008 Universities and community engagement (Position paper 2008–2010)), as reported in this article, suggests that its uneasy synthesis of neoliberal, social inclusion and civic engagement discourses into a hybrid UCE discourse semantically privileges neoliberal forms of engagement. Perhaps, as a result, the AUCEA seems to have missed an opportunity to influence the Australian ‘widening participation’ debate on securing access and opportunity for marginalised students at universities and building social and cultural capital within their communities of origin.
Resumo:
Lanthanum oxide (La2O3) nanostructured films are synthesized on a p-type silicon wafer by ablation of La2O3 pellet due to interaction with hot dense argon plasmas in a modified dense plasma focus (DPF) device. The nanostructured films are investigated using scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray diffraction (XRD) spectra. SEM study shows the formation of nano-films having nano-size structures with the average nanostructures size ~25, ~53, and ~45 nm for one, two, and three DPF shots, respectively. The nanostructures sizes and morphology of nano-films are consistent between the AFM and SEM analyses. XRD spectra confirms nano-sized La2O3 with an average grain size ~34, ~51, and ~42 nm for one, two, and three DPF shots, respectively. The electrical properties such as current-voltage and capacitance-voltage (C-V) characteristics of the Al-La2O3-Si metal-oxide- semiconductor (MOS) capacitor structure are measured. The current conduction mechanism of the MOS capacitors is also demonstrated. The C-V characteristics are further used to obtain the electrical parameters such as the dielectric constant, oxide thickness, flat-band capacitance, and flat-band voltage of the MOS capacitors. These measurements demonstrate significantly lower leakage currents without any commonly used annealing or doping, thereby revealing a significant improvement of the MOS nanoelectronic device performance due to the incorporation of the DPF-produced La2O3 nano-films.
Resumo:
The mineral lomonosovite has been studied using a combination of scanning electron microscopy with energy dispersive X-ray analysis and vibrational spectroscopy. Qualitative chemical analysis gave Si, P, Na and Ti as the as major elements with small amounts of Mn, Ca, Fe and Al. The mineral lomonosovite has a formula Na5Ti2(Si2O7)(PO4)O2. Raman bands observed at 909, 925 and 939 cm−1 are associated with phosphate units. Raman bands found at 975, 999, 1070, 1080 and 1084 cm−1 are attributed to siloxane stretching vibrations. The observation of multiple bands in both the phosphate stretching and bending regions supports the concept that the symmetry of the phosphate anion in the structure of lomonosovite is significantly reduced. Infrared spectroscopy identifies bands in the water stretching and bending regions, thus suggesting that water is involved with the structure of lomonosovite either through adsorption on the surface or by bonding to the phosphate units.
Resumo:
Background Hallux valgus (HV) is highly prevalent and associated with progressive first metatarsophalangeal joint subluxation and osteoarthritis. The link between structural HV deformity and foot pain is unclear. This study investigated possible explanatory factors surrounding foot pain in HV, including radiographic HV angle and signs of joint degeneration. Methods Participants were 60 adults (53 female) with HV aged 20 to 75 years. Participant demographics and a range of radiographic, clinical and functional measures were considered potential correlates of foot pain. Self-reported foot pain (visual analogue scales and a dichotomous definition) was considered the dependent variable. Multivariate modelling was used to determine which characteristics and measures explained pain, with univariate analyses first used to screen potential variables. Results Approximately 20 to 30% of the variance in foot pain associated with HV could be explained by patient characteristics such as poorer general health status, lower educational attainment and increased occupational physical activity levels, in combination with some dynamic physical characteristics such as hallux plantarflexion weakness and reduced force-time integral under the second metatarsal during gait. Neither increasing lateral deviation of the hallux (HV angle) nor presence of first metatarsophalangeal joint osteoarthritis was associated with foot pain. Conclusions This study shows that passive structural factors, including HV angle, do not appear to be significant correlates of foot pain intensity in HV. Our data demonstrate the importance of considering patient characteristics such as general health and physical activity levels when assessing foot pain associated with HV.
Resumo:
Self-assembly of size-uniform and spatially ordered quantum dot (QD) arrays is one of the major challenges in the development of the new generation of semiconducting nanoelectronic and photonic devices. Assembly of Ge QD (in the ∼5-20 nm size range) arrays from randomly generated position and size-nonuniform nanodot patterns on plasma-exposed Si (100) surfaces is studied using hybrid multiscale numerical simulations. It is shown, by properly manipulating the incoming ion/neutral flux from the plasma and the surface temperature, the uniformity of the nanodot size within the array can be improved by 34%-53%, with the best improvement achieved at low surface temperatures and high external incoming fluxes, which are intrinsic to plasma-aided processes. Using a plasma-based process also leads to an improvement (∼22% at 700 K surface temperature and 0.1 MLs incoming flux from the plasma) of the spatial order of a randomly sampled nanodot ensemble, which self-organizes to position the dots equidistantly to their neighbors within the array. Remarkable improvements in QD ordering and size uniformity can be achieved at high growth rates (a few nms) and a surface temperature as low as 600 K, which broadens the range of suitable substrates to temperature-sensitive ultrathin nanofilms and polymers. The results of this study are generic, can also be applied to nonplasma-based techniques, and as such contributes to the development of deterministic strategies of nanoassembly of self-ordered arrays of size-uniform QDs, in the size range where nanodot ordering cannot be achieved by presently available pattern delineation techniques.
Resumo:
High-density inductively coupled plasma (ICP)-assisted self-assembly of the ordered arrays of various carbon nanostructures (NS) for the electron field emission applications is reported. Carbon-based nano-particles, nanotips, and pyramid-like structures, with the controllable shape, ordering, and areal density are grown under remarkably low process temperatures (260-350 °C) and pressures (below 0.1 Torr), on the same Ni-based catalyst layers, in a DC bias-controlled floating temperature regime. A high degree of positional and directional ordering, elevated sp2 content, and a well-structured graphitic morphology are achieved without the use of pre-patterned or externally heated substrates.
Resumo:
Background Nurses play a substantial role in the prevention and management of chemotherapy-induced nausea and vomiting (CINV). Objectives This study set out to describe nurses’ roles in the prevention and management of CINV and to identify any gaps that exist across countries. Methods A self-reported survey was completed by 458 registered nurses who administered chemotherapy to cancer patients in Australia, China, Hong Kong, and 9 Latin American countries. Results More than one-third of participants regarded their own knowledge of CINV as fair to poor. Most participants (>65%) agreed that chemotherapy-induced nausea and chemotherapy-induced vomiting should be considered separately (79%), but only 35% were confident in their ability to manage chemotherapy-induced nausea (53%) or chemotherapy-induced vomiting (59%). Only one-fifth reported frequent use of a standardized CINV assessment tool and only a quarter used international clinical guidelines to manage CINV. Conclusions Participants perceived their own knowledge of CINV management to be insufficient. They recognized the need to develop and use a standardized CINV assessment tool and the importance of adopting international guidelines to inform the management of CINV. Implications for Practice: Findings indicate that international guidelines should be made available to nurses in clinically relevant and easily accessible formats, that a review of chemotherapy assessment tools should be undertaken to identify reliable and valid measures amenable to use in a clinical settings, and that a CINV risk screening tool should be developed as a prompt for nurses to enable timely identification of and intervention for patients at high risk of CINV.
Resumo:
INTRODUCTION: Galectin family members have been demonstrated to be abnormally expressed in cancer at the protein and mRNA level. This study investigated the levels of galectin proteins and mRNA expression in a large cohort of patients with papillary thyroid carcinoma and matched lymph node metastases with particular emphasis on galectin-1 and galectin-3. METHODS: mRNA expression of galectin family members (1, 2, 3, 4, 7, 8, 9, 10 and 12) were analysed by real-time polymerase chain reaction in 65 papillary thyroid carcinomas, 30 matched lymph nodes with metastatic papillary thyroid carcinoma and 5 non-cancer thyroid tissues. Galectin-1 and 3 protein expression was determined by immunohistochemistry in these samples. RESULTS: Significant expression differences in all tested galectin family members (1, 2, 3, 4, 7, 8, 9, 10 and 12) were noted for mRNA in papillary thyroid carcinomas, with and without lymph node metastasis. Galectin-1 protein was more strongly expressed than galectin-3 protein in papillary thyroid carcinoma. Galectin-1 protein was found to be overexpressed in 32% of primary papillary thyroid carcinomas. A majority of lymph nodes with metastatic papillary thyroid carcinoma (53%) had significantly increased expression of galectin-1 protein, as did 47% of primaries with metastases. Galectin-1 mRNA levels were decreased in the vast majority (94%) of primary thyroid carcinomas that did not have metastases present. Galectin-3 protein levels were noted to be overexpressed in 15% of primary papillary thyroid carcinomas. In primary papillary thyroid carcinoma with lymph node metastases, 32% had over expression of galectin-3 protein. Overexpression of galectin-3 mRNA was noted in 58% of papillary thyroid carcinomas and 64% of lymph nodes bearing metastatic papillary thyroid carcinoma. Also, primary papillary thyroid carcinoma with lymph node metastases had significantly higher expression of galectin-3 mRNA compared to those without lymph node metastases. CONCLUSION: Galectin family members show altered expression at the mRNA level in papillary thyroid cancers. Overexpression of galectin-1 and 3 proteins were noted in papillary thyroid carcinoma with lymph node metastases. The results presented here demonstrated that galectin-1 and galectin-3 expression have important roles in clinical progression of papillary thyroid carcinoma.
Resumo:
We aim to examine the miR-1288 expression in cancer cell lines and a large cohort of patients with colorectal cancer. Two colon cancer cell lines (SW480 and SW48) and one normal colonic epithelial cell line (FHC) were recruited. The miRNA expressions of miR-1288 were tested on these cell lines by using quantitative real-time polymerase chain reaction (qRT-PCR). An exogenous miR-1288 (mimic) was used to detect cell proliferation and cell cycle changes in SW480 using MTT calorimetric assay and flow cytometry, respectively. In addition, tissues from 122 patients with surgical resection of colorectum (82 adenocarcinomas, 20 adenomas, and 20 non-neoplastic tissues) were tested for miR-1288 expression by qRT-PCR. The colon cancer cell lines showed reduced expression of miR-1288 compared to normal colonic epithelial cell line. Over expression of miR-1288 in SW480 cell line showed increased cell proliferation and increased G2-M phase cells. In tissues, reduced miR-1288 expression was noted in majority of colorectal adenocarcinoma compared to colorectal adenoma and non-neoplastic tissues. Reduced or absent expression of miR-1288 was noted in 76% (n = 62/82) of the cancers. The expression levels of miR-1288 were higher in distal colorectal adenocarcinomas (P = 0.013) and in cancers of lower T staging (P = 0.033). To conclude, alternation of miR-1288 expression is important in the progression of colorectal cancer. The differential regulation of miR-1288 was found to be related to cancer location and pathological staging in colorectal cancers.
Resumo:
Using a case study approach, this paper presents a robust methodology for assessing the compatibility of stormwater treatment performance data between two geographical regions in relation to a treatment system. The desktop analysis compared data derived from a field study undertaken in Florida, USA, with South East Queensland (SEQ) rainfall and pollutant characteristics. The analysis was based on the hypothesis that when transposing treatment performance information from one geographical region to another, detailed assessment of specific rainfall and stormwater quality parameters is required. Accordingly, characteristics of measured rainfall events and stormwater quality in the Florida study were compared with typical characteristics for SEQ. Rainfall events monitored in the Florida study were found to be similar to events that occur in SEQ in terms of their primary characteristics of depth, duration and intensity. Similarities in total suspended solids (TSS) and total nitrogen (TN) concentration ranges for Florida and SEQ suggest that TSS and TN removal performances would not be very different if the treatment system is installed in SEQ. However, further investigations are needed to evaluate the treatment performance of total phosphorus (TP). The methodology presented also allows comparison of other water quality parameters.
Resumo:
Community arts can take many forms, including murals, installations, festivals and performances. The work can be produced by artists solely, by artists working with community groups, or by community groups. Community arts can be on a grand-scale covering whole streets, parks or even towns, or small- scale, such as a mosaic in the corner of a play area. It can be extremely impacting and a permanent fixture, or fragile and small and designed to blow away in the wind. But, common to all these different forms of community arts are the criteria that community arts are made in, for and/or by, the local community.
Resumo:
Tobacco smoking, alcohol drinking, and occupational exposures to polycyclic aromatic hydrocarbons are the major proven risk factors for human head and neck squamous-cell cancer (HNSCC). Major research focus on gene-environment interactions concerning HNSCC has been on genes encoding enzymes of metabolism for tobacco smoke constituents and repair enzymes. To investigate the role of genetically determined individual predispositions in enzymes of xenobiotic metabolism and in repair enzymes under the exogenous risk factor tobacco smoke in the carcinogenesis of HNSCC, we conducted a case-control study on 312 cases and 300 noncancer controls. We focused on the impact of 22 sequence variations in CYP1A1, CYP1B1, CYP2E1, ERCC2/XPD, GSTM1, GSTP1, GSTT1, NAT2, NQO1, and XRCC1. To assess relevant main and interactive effects of polymorphic genes on the susceptibility to HNSCC we used statistical models such as logic regression and a Bayesian version of logic regression. In subgroup analysis of nonsmokers, main effects in ERCC2 (Lys751Gln) C/C genotype and combined ERCC2 (Arg156Arg) C/A and A/A genotypes were predominant. When stratifying for smokers, the data revealed main effects on combined CYP1B1 (Leu432Val) C/G and G/G genotypes, followed by CYP1B1 (Leu432Val) G/G genotype and CYP2E1 (-70G>T) G/T genotype. When fitting logistic regression models including relevant main effects and interactions in smokers, we found relevant associations of CYP1B1 (Leu432Val) C/G genotype and CYP2E1 (-70G>T) G/T genotype (OR, 10.84; 95% CI, 1.64-71.53) as well as CYP1B1 (Leu432Val) G/G genotype and GSTM1 null/null genotype (OR, 11.79; 95% CI, 2.18-63.77) with HNSCC. The findings underline the relevance of genotypes of polymorphic CYP1B1 combined with exposures to tobacco smoke.
Resumo:
Nano Zero valent iron (Fe0) were reported as an effective material for azo dye removal, however, similar to other nano-materials, ultra-fine powder has a strong tendency to agglomerate into larger particles, resulting in an adverse effect on both effective surface area and catalyst performance. Here we report nano sized Fe0 particles dispersed onto the surface of natural bentonites. X-ray diffraction was used to study the sample phases. Scanning electron microscopy and transmission electron microscopy were applied to study the morphology and morphological changes. Spherical individual Fe0 particles were observed after dispersion onto bentonites, and these samples were used for orange II (OII) decolourization with wide working pH range. Higher reactivity is attributed to good dispersion of Fe0 particles on clay minerals’ surface. This study is significant for providing novel modified clay based catalyst materials for the decolourization of azo dye contaminants from wastewater.
Resumo:
Land-use change, particularly clearing of forests for agriculture, has contributed significantly to the observed rise in atmospheric carbon dioxide concentration. Concern about the impacts on climate has led to efforts to monitor and curtail the rapid increase in concentrations of carbon dioxide and other greenhouse gases in the atmosphere. Internationally, much of the current focus is on the Kyoto Protocol to the United Nations Framework Convention on Climate Change (UNFCCC). Although electing to not ratify the Protocol, Australia, as a party to the UNFCCC, reports on national greenhouse gas emissions, trends in emissions and abatement measures. In this paper we review the complex accounting rules for human activities affecting greenhouse gas fluxes in the terrestrial biosphere and explore implications and potential opportunities for managing carbon in the savanna ecosystems of northern Australia. Savannas in Australia are managed for grazing as well as for cultural and environmental values against a background of extreme climate variability and disturbance, notably fire. Methane from livestock and non-CO2 emissions from burning are important components of the total greenhouse gas emissions associated with management of savannas. International developments in carbon accounting for the terrestrial biosphere bring a requirement for better attribution of change in carbon stocks and more detailed and spatially explicit data on such characteristics of savanna ecosystems as fire regimes, production and type of fuel for burning, drivers of woody encroachment, rates of woody regrowth, stocking rates and grazing impacts. The benefits of improved biophysical information and of understanding the impacts on ecosystem function of natural factors and management options will extend beyond greenhouse accounting to better land management for multiple objectives.