449 resultados para natural classification
Resumo:
Frog protection has become increasingly essential due to the rapid decline of its biodiversity. Therefore, it is valuable to develop new methods for studying this biodiversity. In this paper, a novel feature extraction method is proposed based on perceptual wavelet packet decomposition for classifying frog calls in noisy environments. Pre-processing and syllable segmentation are first applied to the frog call. Then, a spectral peak track is extracted from each syllable if possible. Track duration, dominant frequency and oscillation rate are directly extracted from the track. With k-means clustering algorithm, the calculated dominant frequency of all frog species is clustered into k parts, which produce a frequency scale for wavelet packet decomposition. Based on the adaptive frequency scale, wavelet packet decomposition is applied to the frog calls. Using the wavelet packet decomposition coefficients, a new feature set named perceptual wavelet packet decomposition sub-band cepstral coefficients is extracted. Finally, a k-nearest neighbour (k-NN) classifier is used for the classification. The experiment results show that the proposed features can achieve an average classification accuracy of 97.45% which outperforms syllable features (86.87%) and Mel-frequency cepstral coefficients (MFCCs) feature (90.80%).
Resumo:
Frogs have received increasing attention due to their effectiveness for indicating the environment change. Therefore, it is important to monitor and assess frogs. With the development of sensor techniques, large volumes of audio data (including frog calls) have been collected and need to be analysed. After transforming the audio data into its spectrogram representation using short-time Fourier transform, the visual inspection of this representation motivates us to use image processing techniques for analysing audio data. Applying acoustic event detection (AED) method to spectrograms, acoustic events are firstly detected from which ridges are extracted. Three feature sets, Mel-frequency cepstral coefficients (MFCCs), AED feature set and ridge feature set, are then used for frog call classification with a support vector machine classifier. Fifteen frog species widely spread in Queensland, Australia, are selected to evaluate the proposed method. The experimental results show that ridge feature set can achieve an average classification accuracy of 74.73% which outperforms the MFCCs (38.99%) and AED feature set (67.78%).
Resumo:
Over past few decades, frog species have been experiencing dramatic decline around the world. The reason for this decline includes habitat loss, invasive species, climate change and so on. To better know the status of frog species, classifying frogs has become increasingly important. In this study, acoustic features are investigated for multi-level classification of Australian frogs: family, genus and species, including three families, eleven genera and eighty five species which are collected from Queensland, Australia. For each frog species, six instances are selected from which ten acoustic features are calculated. Then, the multicollinearity between ten features are studied for selecting non-correlated features for subsequent analysis. A decision tree (DT) classifier is used to visually and explicitly determine which acoustic features are relatively important for classifying family, which for genus, and which for species. Finally, a weighted support vector machines (SVMs) classifier is used for the multi- level classification with three most important acoustic features respectively. Our experiment results indicate that using different acoustic feature sets can successfully classify frogs at different levels and the average classification accuracy can be up to 85.6%, 86.1% and 56.2% for family, genus and species respectively.
Resumo:
This study examined associations between objective environmental attributes and, separately, transport (TC) and recreational cycling (RC). Environmental attributes were more strongly associated with TC than RC. Distances to areas with the best bicycle infrastructure and urban amenities may be key environmental factors influencing TC but not RC. Government investments in bicycle infrastructure within inner Brisbane appear to have resulted in more TC than in outer areas and to appeal to residents of both the most and least disadvantaged neighbourhoods. Extending this infrastructure to residents living in disadvantaged and advantaged neighbourhoods outside the CBD could expand TC participation.
Resumo:
Balconies, as one of the main architectural features in subtropical climates, are assumed to enhance the ventilation performance of buildings by redirecting the wind. Although there are some studies on the effect of balconies on natural ventilation inside buildings, the majority have been conducted on single zone buildings with simple geometries. The purpose of this study is to explore the effect of balconies on the internal air flow pattern and ventilation performance of multi-storey residential buildings with internal partitions. To this end, a sample residential unit was selected for investigation and three different conditions tested, base case (no balcony), an open balcony and a semi-enclosed balcony. Computational Fluid Dynamics is used as an analysis method due to its accuracy and ability to provide detailed results. The cases are analysed in terms of average velocity, flow uniformity and number of Air Changes per Hour (ACH). The results suggest the introduction of a semi-enclosed balcony into high-rise dwellings improves the average velocity and flow uniformity. Integrating an open balcony results in reduction of the aforementioned parameters at 0° wind incidence.
Resumo:
This paper proposes new metrics and a performance-assessment framework for vision-based weed and fruit detection and classification algorithms. In order to compare algorithms, and make a decision on which one to use fora particular application, it is necessary to take into account that the performance obtained in a series of tests is subject to uncertainty. Such characterisation of uncertainty seems not to be captured by the performance metrics currently reported in the literature. Therefore, we pose the problem as a general problem of scientific inference, which arises out of incomplete information, and propose as a metric of performance the(posterior) predictive probabilities that the algorithms will provide a correct outcome for target and background detection. We detail the framework through which these predicted probabilities can be obtained, which is Bayesian in nature. As an illustration example, we apply the framework to the assessment of performance of four algorithms that could potentially be used in the detection of capsicums (peppers).
Resumo:
We consider rank regression for clustered data analysis and investigate the induced smoothing method for obtaining the asymptotic covariance matrices of the parameter estimators. We prove that the induced estimating functions are asymptotically unbiased and the resulting estimators are strongly consistent and asymptotically normal. The induced smoothing approach provides an effective way for obtaining asymptotic covariance matrices for between- and within-cluster estimators and for a combined estimator to take account of within-cluster correlations. We also carry out extensive simulation studies to assess the performance of different estimators. The proposed methodology is substantially Much faster in computation and more stable in numerical results than the existing methods. We apply the proposed methodology to a dataset from a randomized clinical trial.
Resumo:
Natural mortality of marine invertebrates is often very high in the early life history stages and decreases in later stages. The possible size-dependent mortality of juvenile banana prawns, P. merguiensis (2-15 mm carapace length) in the Gulf of Carpentaria was investigated. The analysis was based on the data collected at 2-weekly intervals by beam trawls at four sites over a period of six years (between September 1986 and March 1992). It was assumed that mortality was a parametric function of size, rather than a constant. Another complication in estimating mortality for juvenile banana prawns is that a significant proportion of the population emigrates from the study area each year. This effect was accounted for by incorporating the size-frequency pattern of the emigrants in the analysis. Both the extra parameter in the model required to describe the size dependence of mortality, and that used to account for emigration were found to be significantly different from zero, and the instantaneous mortality rate declined from 0.89 week(-1) for 2 mm prawns to 0.02 week(-1) for 15 mm prawns.
Resumo:
A simple stochastic model of a fish population subject to natural and fishing mortalities is described. The fishing effort is assumed to vary over different periods but to be constant within each period. A maximum-likelihood approach is developed for estimating natural mortality (M) and the catchability coefficient (q) simultaneously from catch-and-effort data. If there is not enough contrast in the data to provide reliable estimates of both M and q, as is often the case in practice, the method can be used to obtain the best possible values of q for a range of possible values of M. These techniques are illustrated with tiger prawn (Penaeus semisulcatus) data from the Northern Prawn Fishery of Australia.
Resumo:
A review was carried out of the radiographs of twenty-five infants with birth weights under 1000 G, who survived for more than twenty-eight days; eighteen of these had enough suitable films for a survey of the progressive bone changes which occur in these infants, including estimation of humeral cortical cross-sectional area. The incidence of the changes has been assessed and a typical progression of radiographic appearances has been shown, with a suggested system of staging. All infants showed some loss of bone mineral, with frank changes of rickets occurring in forty-four percent. Aetiological factors are mainly concerned with the difficulty of supplying and ensuring absorption of sufficient bone mineral (calcium and phosphate) and vitamin D. Liver immaturity may be another factor. Disease states additional to prematurity accentuate the problem. Rib fractures occurring around 80–90 days post-nataEy commonly draw attention to the bone disorder and are probably the major clinical factor of importance; there is a high incidence of associated lung disease of uncertain pathology. Attention is drawn to possible confusion with other bone disorders in the post-natal period.
Resumo:
This paper presents a symbolic navigation system that uses spatial language descriptions to inform goal-directed exploration in unfamiliar office environments. An abstract map is created from a collection of natural language phrases describing the spatial layout of the environment. The spatial representation in the abstract map is controlled by a constraint based interpretation of each natural language phrase. In goal-directed exploration of an unseen office environment, the robot links the information in the abstract map to observed symbolic information and its grounded world representation. This paper demonstrates the ability of the system, in both simulated and real-world trials, to efficiently find target rooms in environments that it has never been to previously. In three unexplored environments, it is shown that on average the system travels only 8.42% further than the optimal path when using only natural language phrases to complete navigation tasks.
Resumo:
Being able to accurately predict the risk of falling is crucial in patients with Parkinson’s dis- ease (PD). This is due to the unfavorable effect of falls, which can lower the quality of life as well as directly impact on survival. Three methods considered for predicting falls are decision trees (DT), Bayesian networks (BN), and support vector machines (SVM). Data on a 1-year prospective study conducted at IHBI, Australia, for 51 people with PD are used. Data processing are conducted using rpart and e1071 packages in R for DT and SVM, con- secutively; and Bayes Server 5.5 for the BN. The results show that BN and SVM produce consistently higher accuracy over the 12 months evaluation time points (average sensitivity and specificity > 92%) than DT (average sensitivity 88%, average specificity 72%). DT is prone to imbalanced data so needs to adjust for the misclassification cost. However, DT provides a straightforward, interpretable result and thus is appealing for helping to identify important items related to falls and to generate fallers’ profiles.
Resumo:
Substance misuse in people with psychosis presents significant problems, but trials of treatments to address it show little sustained advantage over control conditions. An examination of mechanisms underpinning unassisted improvements may assist in the refinement of co-morbidity treatments. This study reviewed existing research on natural recovery from substance misuse in people with psychosis. To address this issue, a systematic search identified only 7 articles that fulfilled the criteria. Their results suggest that people with psychosis report similar reasons to change as do non-psychotic groups, although they did not clarify whether the relative frequencies or priority orders were the same. Differences involved issues relating to the disorder and the functional problems faced by this group: receipt of treatment for mental health difficulties, worsening of mental health difficulties, and homelessness. The current research on reasons for change in people with psychosis is sparse and has significant limitations, and as yet it offers little inspiration for new treatments. A more fertile source may prove to be a detailed investigation of successful substance control strategies that are used in self-management by this group.
Resumo:
In this presentation, I reflect upon the global landscape surrounding the governance and classification of media content, at a time of rapid change in media platforms and services for content production and distribution, and contested cultural and social norms. I discuss the tensions and contradictions arising in the relationship between national, regional and global dimensions of media content distribution, as well as the changing relationships between state and non-state actors. These issues will be explored through consideration of issues such as: recent debates over film censorship; the review of the National Classification Scheme conducted by the Australian Law Reform Commission; online controversies such as the future of the Reddit social media site; and videos posted online by the militant group ISIS.