498 resultados para Insurance engineering
Resumo:
Commonwealth legislation covering insurance contracts contains numerous provisions designed to control the operation and effect of terms in life and general insurance contracts. For example, the Life Insurance Act 1995 (Cth) contains provisions regulating the consequences attendant upon incorrect statements in proposals [1] and non-payment of premiums, [2] provides that an insurer may only exclude liability in the case of suicide if it has made express provision for such contingency in its policy, [3] and severely restricts the efficacy of conditions as to war risks. [4] The Insurance Contracts Act 1984 (Cth) is even more intrusive and has a major impact upon contractual provisions in the general insurance field. It is beyond the scope of this note to explore all of these provisions in any detail but examples of controls and constraints imposed upon the operation and effect of contractual provisions include the following. A party is precluded from relying upon a provision in a contract of insurance if such reliance would amount to a failure to act with the utmost good faith. [5] Similarly, a policy provision which requires differences or disputes arising out of the insurance to be submitted to arbitration is void, [6] unless the insurance is a genuine cover for excess of loss over and above another specified insurance. [7] Similarly clause such as conciliation clauses, [8] average clauses, [9] and unusual terms [10] are given qualified operation. [11] However the provision in the Insurance Contracts Act that has the greatest impact upon, and application to, a wide range of insurance clauses and claims is s 54. This section has already generated a significant volume of case law and is the focus of this note. In particular this note examines two recent cases. The first, Johnson v Triple C Furniture and Electrical Pty Ltd [2012] 2 Qd R 337, (hereafter the Triple C case), is a decision of the Queensland Court of Appeal; and the second, Matthew Maxwell v Highway Hauliers Pty Ltd [2013] WASCA 115, (hereafter the Highway Hauliers case), is a decision of the Court of Appeal in Western Australia. This latter decision is on appeal to the High Court of Australia. The note considers too the decision of the New South Wales Court of Appeal in Prepaid Services Pty Ltd v Atradius Credit Insurance NV [2013] NSWCA 252 (hereafter the Prepaid Services case).These cases serve to highlight the complex nature of s 54 and its application, as well as the difficulty in achieving a balance between an insurer and an insured's reasonable expectations.
Resumo:
Society is increasingly calling for professionals across government, industry, business and civil society to be able to problem-solve issues related to climate change and sustainable development as part of their work. In particular there is an emerging realisation of the fundamental need to swiftly reduce the growing demand for energy across society, and to then meet the demand with low emissions options. A key ingredient to addressing such issues is equipping professionals with emerging knowledge and skills to address energy challenges in all aspects of their work. The Council of Australian Governments has recognised this need, signing the National Partnership Agreement on Energy Efficiency in July 2009, which included a commitment to assist business and industry obtain the knowledge, skills and capacity to pursue cost-effective energy efficiency opportunities.2 Engineering will play a critical part among the professions, with Engineers Australia acknowledging that, ‘The need to make changes in the way energy is used and supplied throughout the world represents the greatest challenge to engineers in moving toward sustainability.’
Resumo:
This report presents the findings of an investigation of energy efficiency resources for undergraduate engineering education, undertaken by web-based research, conversations with educators, and a university survey. The investigation draws on the results of a number of previous investigations undertaken by the research team for NFEE related to energy efficiency education and presents the following findings and recommendations, as explained in greater detail in the body of the report. The findings suggest that even though certain EE concepts and principles have been identified by lecturers as being important there is little to no coverage of a number of these concepts in some programs/courses. Similarly, many topics relating to the most important EE workforce skills and significant shortages as identified in industry research, do not rate highly in terms of both perceived importance by lecturers, or coverage within existing courses. Overall, these findings suggest that despite growing awareness of the importance of EE in both industry and academia, the current depth and breadth of EE content in courses does not reflect this. It confirms that efforts in these areas can be better supported.
Resumo:
This paper proposes a recommendation system that supports process participants in taking risk-informed decisions, with the goal of reducing risks that may arise during process execution. Risk reduction involves decreasing the likelihood and severity of a process fault from occurring. Given a business process exposed to risks, e.g. a financial process exposed to a risk of reputation loss, we enact this process and whenever a process participant needs to provide input to the process, e.g. by selecting the next task to execute or by filling out a form, we suggest to the participant the action to perform which minimizes the predicted process risk. Risks are predicted by traversing decision trees generated from the logs of past process executions, which consider process data, involved resources, task durations and other information elements like task frequencies. When applied in the context of multiple process instances running concurrently, a second technique is employed that uses integer linear programming to compute the optimal assignment of resources to tasks to be performed, in order to deal with the interplay between risks relative to different instances. The recommendation system has been implemented as a set of components on top of the YAWL BPM system and its effectiveness has been evaluated using a real-life scenario, in collaboration with risk analysts of a large insurance company. The results, based on a simulation of the real-life scenario and its comparison with the event data provided by the company, show that the process instances executed concurrently complete with significantly fewer faults and with lower fault severities, when the recommendations provided by our recommendation system are taken into account.
Resumo:
Problem solving is an essential element of civil engineering education. It has been observed that students are best able to understand civil engineering theory when there is a practical application of it. Teaching theory alone has led to lower levels of comprehension and motivation and a correspondingly higher rate of failure and “drop-out”. This paper analyses the effectiveness of introducing practical design projects at an early stage within a civil engineering undergraduate program at Queensland University of Technology. In two of the essential basic subjects, Engineering Mechanics and Steel Structures, model projects which simulate realistic engineering exercises were introduced. Students were required to work in small groups to analyse, design and build the lightest / most efficient model bridges made of specific materials such as spaghetti, drinking straw, paddle pop sticks and balsa wood and steel columns for a given design loading/target capacity. The paper traces the success of the teaching strategy at each stage from its introduction through to the final student and staff evaluation.
Resumo:
Neu-Model, an ongoing project aimed at developing a neural simulation environment that is extremely computationally powerful and flexible, is described. It is shown that the use of good Software Engineering techniques in Neu-Model’s design and implementation is resulting in a high performance system that is powerful and flexible enough to allow rigorous exploration of brain function at a variety of conceptual levels.
Resumo:
BACKGROUND Engineering is a problem-based practically oriented discipline, whose practitioners aim to find effective solutions to engineering challenges, technically and economically. Engineering educators operate within a mandate to ensure that graduate engineers understand the practicalities and realities of good engineering practice. While this is a vital goal for the discipline, emerging influences are challenging the focus on ‘hard practicalities’ and requiring recognition of the cultural and social aspects of engineering. Expecting graduate engineers to possess communication skills essential for negotiating satisfactory outcomes in contexts of complex social beliefs about the impact of their work can be an unsettling and challenging prospect for engineering educators. This project identifies and addresses Indigenous engineering practices and principles, and their relevance to future engineering practices. PURPOSE This Office of Learning and Teaching (OLT) project proposes that what is known/discoverable about indigenous engineering knowledge and practices must be integrated into engineering curricula. This is an important aspect of ensuring that engineering as a profession responds competently to increasing demands for socially and environmentally responsible activity across all aspects of engineering activity. DESIGN/METHOD The project addresses i) means for appropriate inclusion of Indigenous students into usual teaching activities ii) assuring engineering educators have access to knowledge of Indigenous practices and skills relevant to particular engineering courses and topics iii) means for preparing all students to negotiate their way through issues of indigenous relationships with the land where engineering projects are planned. The project is undertaking wide-ranging research to collate knowledge about indigenous engineering principles and practices and develop relevant resource materials. RESULTS It is common to hear that such social issues as ‘Indigenous concerns’ are only of concern to environmental engineers. We challenge that perspective, and make the case that Indigenous knowledge is an important issue for all engineering educators in relation to effective integration of indigenous students and preparation of all engineering graduates to engage with indigenous communities. At the time of first contact, a rich and varied, technically literate, Indigenous social framework possessed knowledge of the environment that is not yet fully acknowledged in Australian society. A core outcome of the work will be development of resources relating to Indigenous engineering practices for inclusion in engineering core curricula. CONCLUSIONS A large body of technical knowledge was needed to survive and sustain human society in the complex environment that was Australia before 1788. This project is developing resource materials, and supporting documentation, about that knowledge to enable engineering educators to more easily integrate it into current curricula. The project also aims to demonstrate the importance for graduating engineers to appreciate the existence of diverse perspectives on engineering tasks and learn how to value - and employ - multiple paths to possible solutions.