434 resultados para Consulting engineers
Resumo:
Damage detection in structures has become increasingly important in recent years. While a number of damage detection and localization methods have been proposed, very few attempts have been made to explore the structure damage with noise polluted data which is unavoidable effect in real world. The measurement data are contaminated by noise because of test environment as well as electronic devices and this noise tend to give error results with structural damage identification methods. Therefore it is important to investigate a method which can perform better with noise polluted data. This paper introduces a new damage index using principal component analysis (PCA) for damage detection of building structures being able to accept noise polluted frequency response functions (FRFs) as input. The FRF data are obtained from the function datagen of MATLAB program which is available on the web site of the IASC-ASCE (International Association for Structural Control– American Society of Civil Engineers) Structural Health Monitoring (SHM) Task Group. The proposed method involves a five-stage process: calculation of FRFs, calculation of damage index values using proposed algorithm, development of the artificial neural networks and introducing damage indices as input parameters and damage detection of the structure. This paper briefly describes the methodology and the results obtained in detecting damage in all six cases of the benchmark study with different noise levels. The proposed method is applied to a benchmark problem sponsored by the IASC-ASCE Task Group on Structural Health Monitoring, which was developed in order to facilitate the comparison of various damage identification methods. The illustrated results show that the PCA-based algorithm is effective for structural health monitoring with noise polluted FRFs which is of common occurrence when dealing with industrial structures.
Resumo:
Selecting an appropriate design-builder is critical to the success of DB projects. The objective of this study is to identify selection criteria for design-builders and compare their relative importance by means of a robust content analysis of 94 Request For Proposals (RFPs) for public DB projects. These DB projects had an aggregate contract value of over US$3.5 billion and were advertised between 2000 and 2010. This study summarized twenty-six selection criteria and classified into ten categories, i.e.: price, experience, technical approach, management approach, qualification, schedule, past performance, financial capability, responsiveness to the RFP, and legal status in descending order of their relative importance. The results showed that even though price still remains as the most important selection category, its relative importance declines significantly in the last decade. The categories of qualification, experience, past performance, by contrast, have been becoming more important to DB owners for selecting design-builders. Finally, it is found that the importance weighting of price in large projects is significantly higher than that in small projects. This study provides a useful reference for owners in selecting their preferred design-builders.
Resumo:
The two-phrase best-value process has been widely used by public agencies for Design and Build (DB) procurement, with a key issue in the first phase of pre-qualification being the determination of evaluation criteria. This study identified a set of general qualification criteria for design-builders and compares their relative importance by a thorough content analysis of 97 Requests for Qualification (RFQ) for public DB projects advertised between 2000 and 2011 in various regions of the USA. The thirty-nine qualification criteria found are summarized and classified into eight categories comprising: experience; project understanding and approach; organizational structure and capacity; past performance record; professional qualifications; responsiveness to RFQs, office location and familiarity with local environment; and legal status in descending order of their relative importance. A comparative analysis of different types of projects shows that the relative weightings of the qualification criteria vary according to different characteristics of the DB projects involved.
Resumo:
Many academic researchers have conducted studies on the selection of design-build (DB) delivery method; however, there are few studies on the selection of DB operational variations, which poses challenges to many clients. The selection of DB operational variation is a multi-criteria decision making process that requires clients to objectively evaluate the performance of each DB operational variation with reference to the selection criteria. This evaluation process is often characterized by subjectivity and uncertainty. In order to resolve this deficiency, the current investigation aimed to establish a fuzzy multicriteria decision-making (FMCDM) model for selecting the most suitable DB operational variation. A three-round Delphi questionnaire survey was conducted to identify the selection criteria and their relative importance. A fuzzy set theory approach, namely the modified horizontal approach with the bisector error method, was applied to establish the fuzzy membership functions, which enables clients to perform quantitative calculations on the performance of each DB operational variation. The FMCDM was developed using the weighted mean method to aggregate the overall performance of DB operational variations with regard to the selection criteria. The proposed FMCDM model enables clients to perform quantitative calculations in a fuzzy decision-making environment and provides a useful tool to cope with different project attributes.
Resumo:
Purpose-- DB clients play a vital role in the delivery of DB system and the clients’ competences are critical to the success of DB projects. Most of DB clients, however, remain inexperienced with the DB system. This study, therefore, aims to identify the key competences that DB clients should possess to ensure the success of DB projects in the construction market of China. Design/Methodology/Approach -- Five semi-structured face-to-face interviews and two rounds Delphi questionnaire survey were conducted in the construction market of China to identify the key competences of DB clients. Rankings have been assigned to these key competences on the basis of their relative importance. Findings-- Six ranked key competences of DB clients have been identified, which are, namely, (1) the ability to clearly define project scope and objectives; (2) financial capacity for the projects; (3) capacity in contract management; (4) adequate staff or consulting team; (5) effective coordination with DB contractors and (6) experience with similar design-build projects. Calculation of Kendall’s Coefficient of Concordance (W) indicates a statistically significant consensus of panel experts on these top six key competences. Practical implications—Clients should clearly understand the competence requirements in DB projects and should assess their DB capability before going for the DB option. Originality/Value-- The examination of DB client’s key competences will help the client deepen the understanding of the DB system. DB clients can also make use of the research findings as guidelines to improve their DB competence.
Resumo:
The design-build system has been demonstrated as an effective delivery method and gained popularity worldwide. Although there are an increasing number of clients adopting DB method in China, most of them remain inexperienced with method. The objective of this study is therefore to identify the key competences that a client or its consultant should possess to ensure the success of DB projects. Face-to-face interviews and a two-round Delphi questionnaire survey were conducted to find the following six key competences of clients, which include the (1) ability to clearly articulate project scope and objectives; (2) financial capacity for DB projects; (3) capability in contract management; (4) adequate staff or consulting team; (5) effective coordination with contractors and (6) experience with similar DB projects. This study will hopefully provide clients with measures to evaluate their DB competence and further promote their understanding of DB system in the PRC.
Resumo:
Abstract: LiteSteel beam (LSB) is a new cold-formed steel hollow flange channel beam produced using a patented manufacturing process involving simultaneous cold-forming and dual electric resistance welding. It has the beneficial characteristics of torsionally rigid closed rectangular flanges combined with economical fabrication processes from a single strip of high strength steel. Although the LSB sections are commonly used as flexural members, no research has been undertaken on the shear behaviour of LSBs. Therefore experimental and numerical studies were undertaken to investigate the shear behaviour and strength of LSBs. In this research finite element models of LSBs were developed to investigate their nonlinear shear behaviour including their buckling characteristics and ultimate shear strength. They were validated by comparing their results with available experimental results. The models provided full details of the shear buckling and strength characteristics of LSBs, and showed the presence of considerable improvements to web shear buckling in LSBs and associated post-buckling strength. This paper presents the details of the finite element models of LSBs and the results. Both finite element analysis and experimental results showed that the current design rules in cold-formed steel codes are very conservative for the shear design of LSBs. The ultimate shear capacities from finite element analyses confirmed the accuracy of proposed shear strength equations for LSBs based on the North American specification and DSM design equations. Developed finite element models were used to investigate the reduction to shear capacity of LSBs when full height web side plates were not used or when only one web side plate was used, and these results are also presented in this paper.
Resumo:
Abstract: LiteSteel beam (LSB) is a new cold-formed steel hollow flange channel section produced using a patented manufacturing process involving simultaneous cold-forming and dual electric resistance welding. The LSBs are commonly used as floor joists and bearers with web openings in residential, industrial and commercial buildings. Their shear strengths are considerably reduced when web openings are included for the purpose of locating building services. However, no research has been undertaken on the shear behaviour and strength of LSBs with web openings. Therefore experimental and numerical studies were undertaken to investigate the shear behaviour and strength of LSBs with web openings. In this research, finite element models of LSBs with web openings in shear were developed to simulate the shear behaviour and strength of LSBs including their buckling characteristics. They were then validated by comparing their results with available experimental test results and used in a detailed parametric study. The results showed that the current design rules in cold-formed steel structures design codes are very conservative for the shear design of LSBs with web openings. Improved design equations have been proposed for the shear capacity of LSBs with web openings based on both experimental and parametric study results. An alternative shear design method based on an equivalent reduced web thickness was also proposed. It was found that the same shear strength design rules developed for LSBs without web openings can be used for LSBs with web openings provided the equivalent reduced web thickness equation developed in this paper is used. This is a significant advancement as it simplifies the shear design methods of LSBs with web openings considerably.
Resumo:
Although the design-build (DB) system has been demonstrated to be an effective delivery method and has gained popularity worldwide, it has not gained the same popularity in the construction market of China. The objective of this study was, theretofore, to investigate the barriers to entry in the DB market. A total of 22 entry barriers were first identified through an open-ended questionnaire survey with 15 top construction professionals in the construction market of China. A broad questionnaire survey was further conducted to prioritize these entry barriers. Statistical analysis of responses shows that the most dominant barriers to entry into the DB market are, namely, lack of design expertise, lack of interest from owners, lack of suitable organization structure, lack of DB specialists, and lack of credit record system. Analysis of variance indicates that there is no difference of opinions among the respondent groups of academia, government departments, state-owned company, and private company, at the 5% significance level, on most of the barriers to entry. Finally, the underlying dimensions of barriers to entry in the DB market were investigated through factor analysis. The results indicate that there are six major underlying dimensions of entry barriers in DB market, which include, namely, the competence of design-builders, difficulty in project procurement, characteristics of DB projects, lack of support from public sectors, the competence of DB owners, and the immaturity of DB market. These findings are useful for both potential and incumbent design-builders to understand and analyze the DB market in China.
Resumo:
Virtual prototyping emerges as a new technology to replace existing physical prototypes for product evaluation, which are costly and time consuming to manufacture. Virtualization technology allows engineers and ergonomists to perform virtual builds and different ergonomic analyses on a product. Digital Human Modelling (DHM) software packages such as Siemens Jack, often integrate with CAD systems to provide a virtual environment which allows investigation of operator and product compatibility. Although the integration between DHM and CAD systems allows for the ergonomic analysis of anthropometric design, human musculoskeletal, multi-body modelling software packages such as the AnyBody Modelling System (AMS) are required to support physiologic design. They provide muscular force analysis, estimate human musculoskeletal strain and help address human comfort assessment. However, the independent characteristics of the modelling systems Jack and AMS constrain engineers and ergonomists in conducting a complete ergonomic analysis. AMS is a stand alone programming system without a capability to integrate into CAD environments. Jack is providing CAD integrated human-in-the-loop capability, but without considering musculoskeletal activity. Consequently, engineers and ergonomists need to perform many redundant tasks during product and process design. Besides, the existing biomechanical model in AMS uses a simplified estimation of body proportions, based on a segment mass ratio derived scaling approach. This is insufficient to represent user populations anthropometrically correct in AMS. In addition, sub-models are derived from different sources of morphologic data and are therefore anthropometrically inconsistent. Therefore, an interface between the biomechanical AMS and the virtual human model Jack was developed to integrate a musculoskeletal simulation with Jack posture modeling. This interface provides direct data exchange between the two man-models, based on a consistent data structure and common body model. The study assesses kinematic and biomechanical model characteristics of Jack and AMS, and defines an appropriate biomechanical model. The information content for interfacing the two systems is defined and a protocol is identified. The interface program is developed and implemented through Tcl and Jack-script(Python), and interacts with the AMS console application to operate AMS procedures.
Resumo:
Digital human modeling (DHM), as a convenient and cost-effective tool, is increasingly incorporated into product and workplace design. In product design, it is predominantly used for the development of driver-vehicle systems. Most digital human modeling software tools, such as JACK, RAMSIS and DELMIA HUMANBUILDER provide functions to predict posture and positions for drivers with selected anthropometry according to SAE (Society of Automotive Engineers) Recommended Practices and other ergonomics guidelines. However, few studies have presented 2nd row passenger postural information, and digital human modeling of these passenger postures cannot be performed directly using the existing driver posture prediction functions. In this paper, the significant studies related to occupant posture and modeling were reviewed and a framework of determinants of driver vs. 2nd row occupant posture modeling was extracted. The determinants which are regarded as input factors for posture modeling include target population anthropometry, vehicle package geometry and seat design variables as well as task definitions. The differences between determinants of driver and 2nd row occupant posture models are significant, as driver posture modeling is primarily based on the position of the foot on the accelerator pedal (accelerator actuation point AAP, accelerator heel point AHP) and the hands on the steering wheel (steering wheel centre point A-Point). The objectives of this paper are aimed to investigate those differences between driver and passenger posture, and to supplement the existing parametric model for occupant posture prediction. With the guide of the framework, the associated input parameters of occupant digital human models of both driver and second row occupant will be identified. Beyond the existing occupant posture models, for example a driver posture model could be modified to predict second row occupant posture, by adjusting the associated input parameters introduced in this paper. This study combines results from a literature review and the theoretical modeling stage of a second row passenger posture prediction model project.
Resumo:
1.1 Background What is renewable energy education and training? A cursory exploration of the International Solar Energy Society website (www.ises.org) reveals numerous references to education and training, referring collectively to concepts of the transfer and exchange of information and good practices, awareness raising and skills development. The purposes of such education and training relate to changing policy, stimulating industry, improving quality control and promoting the wider use of renewable energy sources. The primary objective appears to be to accelerate a transition to a better world for everyone (ISEE), as the greater use of renewable energy is seen as key to climate recovery; world poverty alleviation; advances in energy security, access and equality; improved human and environmental health; and a stabilized society. The Solar Cities project – Habitats of Tomorrow – aims at promoting the greater use of renewable energy within the context of long term planning for sustainable urban development. The focus is on cities or communities as complete systems; each one a unique laboratory allowing for the study of urban sustainability within the context of a low carbon lifestyle. The purpose of this paper is to report on an evaluation of a Solar Community in Australia, focusing specifically on the implications (i) for our understandings and practices in renewable energy education and training and (ii) for sustainability outcomes. 1.2 Methodology The physical context is a residential Ecovillage (a Solar Community) in sub-tropical Queensland, Australia (latitude 28o south). An extensive Architectural and Landscape Code (A&LC) ‘premised on the interconnectedness of all things’ and embracing ‘both local and global concerns’ governs the design and construction of housing in the estate: all houses are constructed off-ground (i.e. on stumps or stilts) and incorporate a hybrid approach to the building envelope (mixed use of thermal mass and light-weight materials). Passive solar design, gas boosted solar water heaters and a minimum 1kWp photovoltaic system (grid connected) are all mandatory, whilst high energy use appliances such as air conditioners and clothes driers are not permitted. Eight families participated in an extended case study that encompassed both quantitative and qualitative approaches to better understand sustainable housing (perceived as a single complex technology) through its phases of design, construction and occupation. 1.3 Results The results revealed that the level of sustainability (i.e. the performance outcomes in terms of a low-carbon lifestyle) was impacted on by numerous ‘players’ in the supply chain, such as architects, engineers and subcontractors, the housing market, the developer, product manufacturers / suppliers / installers and regulators. Three key factors were complicit in the level of success: (i) systems thinking; (ii) informed decision making; and (iii) environmental ethics and business practices. 1.4 Discussion The experiences of these families bring into question our understandings and practices with regard to education and training. Whilst increasing and transferring knowledge and skills is essential, the results appear to indicate that there is a strong need for expanding our education efforts to incorporate foundational skills in complex systems and decision making processes, combined with an understanding of how our individual and collective values and beliefs impact on these systems and processes.
Resumo:
The low resolution of images has been one of the major limitations in recognising humans from a distance using their biometric traits, such as face and iris. Superresolution has been employed to improve the resolution and the recognition performance simultaneously, however the majority of techniques employed operate in the pixel domain, such that the biometric feature vectors are extracted from a super-resolved input image. Feature-domain superresolution has been proposed for face and iris, and is shown to further improve recognition performance by capitalising on direct super-resolving the features which are used for recognition. However, current feature-domain superresolution approaches are limited to simple linear features such as Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA), which are not the most discriminant features for biometrics. Gabor-based features have been shown to be one of the most discriminant features for biometrics including face and iris. This paper proposes a framework to conduct super-resolution in the non-linear Gabor feature domain to further improve the recognition performance of biometric systems. Experiments have confirmed the validity of the proposed approach, demonstrating superior performance to existing linear approaches for both face and iris biometrics.
Resumo:
Background Comprehensive geriatric assessment has been shown to improve patient outcomes, but the geriatricians who deliver it are in short-supply. A web-based method of comprehensive geriatric assessment has been developed with the potential to improve access to specialist geriatric expertise. The current study aims to test the reliability and safety of comprehensive geriatric assessment performed “online” in making geriatric triage decisions. It will also explore the accuracy of the procedure in identifying common geriatric syndromes, and its cost relative to conventional “live” consultations. Methods/Design The study population will consist of 270 acutely hospitalized patients referred for geriatric consultation at three sites. Paired assessments (live and online) will be conducted by independent, blinded geriatricians and the level of agreement examined. This will be compared with the level of agreement between two independent, blinded geriatricians each consulting with the patient in person (i.e. “live”). Agreement between the triage decision from live-live assessments and between the triage decision from live-online assessments will be calculated using kappa statistics. Agreement between the online and live detection of common geriatric syndromes will also be assessed using kappa statistics. Resource use data will be collected for online and live-live assessments to allow comparison between the two procedures. Discussion If the online approach is found to be less precise than live assessment, further analysis will seek to identify patient subgroups where disagreement is more likely. This may enable a protocol to be developed that avoids unsafe clinical decisions at a distance. Trial registration Trial registration number: ACTRN12611000936921
Resumo:
The purpose of this paper is to show how project management governance is addressed through the use of a specific meta-method. Governance is defined here on two criteria: accountability and performance. Accountability is promoted through transparency and performance is promoted by responsive and responsible decision-making. According to a systemic perspective, transparency and decision-making involve having information, tacit or explicit knowledge, as well as understanding of the context, the different parameters and variables, their interaction and conditions of change. Although this method of methods was built according a heuristic process involving 25 years of various researches and consulting activities, it seems appropriate to draw its foundations. I clarify first my epistemological position and the notion of project and project management, as Art and Science. This lead me to define a "Be" / "Have" posture to this regards. Then, the main theoretical roots of MAP Method are exposed: Boisot' s Social Learning Cycle, Praxeology and Theory of Convention. Then we introduced the main characteristics of the method and the 17 methods and tools constituting MAP "tool box", thus with regard to the project management governance perspective. Finally, I discuss the integration of two managerial modes (operational and project modes) and the consequence in term of governance in a specific socio-techno-economic project/context ecosystem.