710 resultados para Variance Models
Resumo:
In this paper we present a new simulation methodology in order to obtain exact or approximate Bayesian inference for models for low-valued count time series data that have computationally demanding likelihood functions. The algorithm fits within the framework of particle Markov chain Monte Carlo (PMCMC) methods. The particle filter requires only model simulations and, in this regard, our approach has connections with approximate Bayesian computation (ABC). However, an advantage of using the PMCMC approach in this setting is that simulated data can be matched with data observed one-at-a-time, rather than attempting to match on the full dataset simultaneously or on a low-dimensional non-sufficient summary statistic, which is common practice in ABC. For low-valued count time series data we find that it is often computationally feasible to match simulated data with observed data exactly. Our particle filter maintains $N$ particles by repeating the simulation until $N+1$ exact matches are obtained. Our algorithm creates an unbiased estimate of the likelihood, resulting in exact posterior inferences when included in an MCMC algorithm. In cases where exact matching is computationally prohibitive, a tolerance is introduced as per ABC. A novel aspect of our approach is that we introduce auxiliary variables into our particle filter so that partially observed and/or non-Markovian models can be accommodated. We demonstrate that Bayesian model choice problems can be easily handled in this framework.
Resumo:
Topic modeling has been widely utilized in the fields of information retrieval, text mining, text classification etc. Most existing statistical topic modeling methods such as LDA and pLSA generate a term based representation to represent a topic by selecting single words from multinomial word distribution over this topic. There are two main shortcomings: firstly, popular or common words occur very often across different topics that bring ambiguity to understand topics; secondly, single words lack coherent semantic meaning to accurately represent topics. In order to overcome these problems, in this paper, we propose a two-stage model that combines text mining and pattern mining with statistical modeling to generate more discriminative and semantic rich topic representations. Experiments show that the optimized topic representations generated by the proposed methods outperform the typical statistical topic modeling method LDA in terms of accuracy and certainty.
Resumo:
The determinants and key mechanisms of cancer cell osteotropism have not been identified, mainly due to the lack of reproducible animal models representing the biological, genetic and clinical features seen in humans. An ideal model should be capable of recapitulating as many steps of the metastatic cascade as possible, thus facilitating the development of prognostic markers and novel therapeutic strategies. Most animal models of bone metastasis still have to be derived experimentally as most syngeneic and transgeneic approaches do not provide a robust skeletal phenotype and do not recapitulate the biological processes seen in humans. The xenotransplantation of human cancer cells or tumour tissue into immunocompromised murine hosts provides the possibility to simulate early and late stages of the human disease. Human bone or tissue-engineered human bone constructs can be implanted into the animal to recapitulate more subtle, species-specific aspects of the mutual interaction between human cancer cells and the human bone microenvironment. Moreover, the replication of the entire "organ" bone makes it possible to analyse the interaction between cancer cells and the haematopoietic niche and to confer at least a partial human immunity to the murine host. This process of humanisation is facilitated by novel immunocompromised mouse strains that allow a high engraftment rate of human cells or tissue. These humanised xenograft models provide an important research tool to study human biological processes of bone metastasis.
Resumo:
Radio Frequency Identification is a wireless identification method that utilizes the reception of electromagnetic radio waves. This research has proposed a novel model to allow for an in-depth security analysis of current protocols and developed new flexible protocols that can be adapted to offer either stronger security or better efficiency.
Resumo:
The research reported here addresses the problem of athlete off-field behaviours as they influence sports’ sponsors, particularly the achievement of sponsorship objectives. The question arises because of incidents of sponsorship contract cancellation following news-media reporting of athletes’ off-field behaviours. Two studies are used to investigate the research question; the first establishes the content of news-media reports, and the second tests the effects of news’ reports on athlete, team and sponsor evaluations using an experimental design. Key assumptions of the research are that sponsorship objectives are principally consumer-based and mediated. Models of sponsorship argue that sponsors aim to reach and influence consumers through sponsees. Assuming this pathway exists is central to sponsorship activities. A corollary is that other mediators, in this case the news-media, may also communicate (uncontrollable) messages such that a consumer audience may be told of negative news that may then be associated with the sponsor. When sponsors cancel contracts it is assumed that their goal is to control the links between their brand and a negative referent. Balance theory is used to discuss the potential effects of negative off-field behaviours of athletes on sponsor’s objectives. Heider’s balance theory (1958) explains that individuals prefer to evaluate linked individuals or entities consistently. In the sponsorship context this presents the possibility that a negative evaluation of the athlete’s behaviour will contribute to correspondingly negative evaluations of the athlete’s team and sponsors. A content analysis (Study 1) was used to survey the types of athlete off-field behaviours commonly reported in a newspaper. In order to provide a local context for the research, articles from the Courier Mail were sampled and teams in the National Rugby League (NRL) competition were the focus of the research. The study identified nearly 2000 articles referring to the NRL competition; 258 of those refer to off-field incidents involving athletes. The various types of behaviours reported include assault, sexual assault allegations, driving under the influence of alcohol, illicit drug use, breaches of club rules, and positive off-field activities (i.e., charitable activities). An experiment (Study 2) tested three news’ article stimuli developed from the behaviours identified in Study 1 in a between-subjects design. A measure of Identification with the Team was used as a covariate variable in the Multivariate Analysis of Covariance analysis. Social identity theory suggests that when an individual identifies with a group, their attitudes and behaviours towards both in- and out-group members are modified. Use of Identification with the Team as a covariate acknowledges that respondents will evaluate behaviours differently according to the attribution of those behaviours to an in- or out-group member. Findings of the research suggest that the news’ article stimuli have significant, large effects on evaluations of athlete off-field behaviour and athlete Likability. Consistent with pretest results, charitable fundraising is regarded as extremely positive; the athlete, correspondingly, is likable. Assault is evaluated as extremely negative, and the athlete as unlikable. DUI scores reveal that the athlete’s behaviour is very negative; however, the athlete’s likability was evaluated as neutral. Treatment group does not produce any significant effects on team or sponsor variables. This research also finds that Identification with the Team has significant, large effects on team variables (Attitude toward the Brand and Corporate Image). Identification also has a significant large effect on athlete Likability, but not on Attitude toward the Act. Identification with the Team does not produce any significant effects on sponsor variables. The results of this research suggest that sponsor’s consumer-based objectives are not threatened by newspaper reports linking athlete off-field behaviour with their brand. Evaluations of sponsor variables (Attitude toward the Sponsor’s Brand and Corporate Image) were consistently positive. Variance in that data, however, cannot be attributed to experimental stimuli or Identification with the Team. These results argue that respondents may regard sponsorships, in principle, as good. Although it is good news for sponsors that negative evaluations of athletes will not produce correspondingly negative evaluations of consumer-based sponsorship objectives, the results indicate problems for sponsorship managers. The failure of Identification with the Team to explain sponsor variable variance indicates that the sponsor has not been evaluated as a linked entity in a relationship with the sporting team and athlete in this research. This result argues that the sponsee-mediated affective communication path that sponsors aim use to communicate with desirable publics is not necessarily a path available to them.
Resumo:
Travelling wave phenomena are observed in many biological applications. Mathematical theory of standard reaction-diffusion problems shows that simple partial differential equations exhibit travelling wave solutions with constant wavespeed and such models are used to describe, for example, waves of chemical concentrations, electrical signals, cell migration, waves of epidemics and population dynamics. However, as in the study of cell motion in complex spatial geometries, experimental data are often not consistent with constant wavespeed. Non-local spatial models have successfully been used to model anomalous diffusion and spatial heterogeneity in different physical contexts. In this paper, we develop a fractional model based on the Fisher-Kolmogoroff equation and analyse it for its wavespeed properties, attempting to relate the numerical results obtained from our simulations to experimental data describing enteric neural crest-derived cells migrating along the intact gut of mouse embryos. The model proposed essentially combines fractional and standard diffusion in different regions of the spatial domain and qualitatively reproduces the behaviour of neural crest-derived cells observed in the caecum and the hindgut of mouse embryos during in vivo experiments.
Resumo:
This thesis makes several contributions towards improved methods for encoding structure in computational models of word meaning. New methods are proposed and evaluated which address the requirement of being able to easily encode linguistic structural features within a computational representation while retaining the ability to scale to large volumes of textual data. Various methods are implemented and evaluated on a range of evaluation tasks to demonstrate the effectiveness of the proposed methods.
Resumo:
This book presents readers with the opportunity to fundamentally re-evaluate the processes of innovation and entrepreneurship, and to rethink how they might best be stimulated and fostered within our organizations and communities. The fundamental thesis of the book is that the entrepreneurial process is not a linear progression from novel idea to successful innovation, but is an iterative series of experiments, where progress depends on the persistence and resilience of the individuals involved, and their ability and to learn from failure as well as success. From this premise, the authors argue that the ideal environment for new venture creation is a form of “experimental laboratory,” a community of innovators where ideas are generated, shared, and refined; experiments are encouraged; and which in itself serves as a test environment for those ideas and experiments. This environment is quite different from the traditional “incubator,” which may impose the disciplines of the established firm too early in the development of the new venture.
Resumo:
A range of authors from the risk management, crisis management, and crisis communications literature have proposed different models as a means of understanding components of crisis. A generic component of these sources has focused on preparedness practices before disturbance events and response practices during events. This paper provides a critical analysis of three key explanatory models of how crises escalate highlighting the strengths and limitations of each approach. The paper introduces an optimised conceptual model utilising components from the previous work under the four phases of pre-event, response, recovery, and post-event. Within these four phases, a ten step process is introduced that can enhance understanding of the progression of distinct stages of disturbance for different types of events. This crisis evolution framework is examined as a means to provide clarity and applicability to a range of infrastructure failure contexts and provide a path for further empirical investigation in this area.
Resumo:
The traditional hospital-based model of cardiac rehabilitation faces substantial challenges, such as cost and accessibility. These challenges have led to the development of alternative models of cardiac rehabilitation in recent years. The aim of this study was to identify and critique evidence for the effectiveness of these alternative models. A total of 22 databases were searched to identify quantitative studies or systematic reviews of quantitative studies regarding the effectiveness of alternative models of cardiac rehabilitation. Included studies were appraised using a Critical Appraisal Skills Programme tool and the National Health and Medical Research Council's designations for Level of Evidence. The 83 included articles described interventions in the following broad categories of alternative models of care: multifactorial individualized telehealth, internet based, telehealth focused on exercise, telehealth focused on recovery, community- or home-based, and complementary therapies. Multifactorial individualized telehealth and community- or home-based cardiac rehabilitation are effective alternative models of cardiac rehabilitation, as they have produced similar reductions in cardiovascular disease risk factors compared with hospital-based programmes. While further research is required to address the paucity of data available regarding the effectiveness of alternative models of cardiac rehabilitation in rural, remote, and culturally and linguistically diverse populations, our review indicates there is no need to rely on hospital-based strategies alone to deliver effective cardiac rehabilitation. Local healthcare systems should strive to integrate alternative models of cardiac rehabilitation, such as brief telehealth interventions tailored to individual's risk factor profiles as well as community- or home-based programmes, in order to ensure there are choices available for patients that best fit their needs, risk factor profile, and preferences.
Resumo:
Invasion waves of cells play an important role in development, disease and repair. Standard discrete models of such processes typically involve simulating cell motility, cell proliferation and cell-to-cell crowding effects in a lattice-based framework. The continuum-limit description is often given by a reaction–diffusion equation that is related to the Fisher–Kolmogorov equation. One of the limitations of a standard lattice-based approach is that real cells move and proliferate in continuous space and are not restricted to a predefined lattice structure. We present a lattice-free model of cell motility and proliferation, with cell-to-cell crowding effects, and we use the model to replicate invasion wave-type behaviour. The continuum-limit description of the discrete model is a reaction–diffusion equation with a proliferation term that is different from lattice-based models. Comparing lattice based and lattice-free simulations indicates that both models lead to invasion fronts that are similar at the leading edge, where the cell density is low. Conversely, the two models make different predictions in the high density region of the domain, well behind the leading edge. We analyse the continuum-limit description of the lattice based and lattice-free models to show that both give rise to invasion wave type solutions that move with the same speed but have very different shapes. We explore the significance of these differences by calibrating the parameters in the standard Fisher–Kolmogorov equation using data from the lattice-free model. We conclude that estimating parameters using this kind of standard procedure can produce misleading results.
Resumo:
This thesis describes the use of 2- and 3-dimensional cell-based models for studying how skin cells respond to ultraviolet radiation. These methods were used to investigate skin damage and repair after exposure to radiation in the context of skin cancer development. Interactions between different skin cell types were demonstrated as being significant in protecting against ultraviolet radiation-induced skin damage. This has important implications in understanding how skin cancers occur, as well as in the development of new strategies to prevent and treat them.
Resumo:
The reliability analysis is crucial to reducing unexpected down time, severe failures and ever tightened maintenance budget of engineering assets. Hazard based reliability methods are of particular interest as hazard reflects the current health status of engineering assets and their imminent failure risks. Most existing hazard models were constructed using the statistical methods. However, these methods were established largely based on two assumptions: one is the assumption of baseline failure distributions being accurate to the population concerned and the other is the assumption of effects of covariates on hazards. These two assumptions may be difficult to achieve and therefore compromise the effectiveness of hazard models in the application. To address this issue, a non-linear hazard modelling approach is developed in this research using neural networks (NNs), resulting in neural network hazard models (NNHMs), to deal with limitations due to the two assumptions for statistical models. With the success of failure prevention effort, less failure history becomes available for reliability analysis. Involving condition data or covariates is a natural solution to this challenge. A critical issue for involving covariates in reliability analysis is that complete and consistent covariate data are often unavailable in reality due to inconsistent measuring frequencies of multiple covariates, sensor failure, and sparse intrusive measurements. This problem has not been studied adequately in current reliability applications. This research thus investigates such incomplete covariates problem in reliability analysis. Typical approaches to handling incomplete covariates have been studied to investigate their performance and effects on the reliability analysis results. Since these existing approaches could underestimate the variance in regressions and introduce extra uncertainties to reliability analysis, the developed NNHMs are extended to include handling incomplete covariates as an integral part. The extended versions of NNHMs have been validated using simulated bearing data and real data from a liquefied natural gas pump. The results demonstrate the new approach outperforms the typical incomplete covariates handling approaches. Another problem in reliability analysis is that future covariates of engineering assets are generally unavailable. In existing practices for multi-step reliability analysis, historical covariates were used to estimate the future covariates. Covariates of engineering assets, however, are often subject to substantial fluctuation due to the influence of both engineering degradation and changes in environmental settings. The commonly used covariate extrapolation methods thus would not be suitable because of the error accumulation and uncertainty propagation. To overcome this difficulty, instead of directly extrapolating covariate values, projection of covariate states is conducted in this research. The estimated covariate states and unknown covariate values in future running steps of assets constitute an incomplete covariate set which is then analysed by the extended NNHMs. A new assessment function is also proposed to evaluate risks of underestimated and overestimated reliability analysis results. A case study using field data from a paper and pulp mill has been conducted and it demonstrates that this new multi-step reliability analysis procedure is able to generate more accurate analysis results.