410 resultados para Least Energy Solutions


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Responding to the idea of child friendly communities, Play a Part is an innovative program advancing preventative strategies for children and young people to minimise exposure to abuse and neglect. The program was developed ensuing an increase in notifications of suspected child abuse and neglect in 2007. Now completing the second phase, the program is a community engagement strategy that aims to prevent child abuse. Play a Part is described as “a whole of community approach to creating child friendly communities” (NAPCAN, 2012). The Play a Part program was piloted between 2007 and 2010 in five southeast Queensland communities, and is currently operating in parts of Logan City region and the Redlands region. To assess the merit of the second phase of the program the Children and Youth Research Centre at Queensland University of Technology was contracted to undertake an evaluation-research at the beginning of 2013.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The addition of surface tension to the classical Stefan problem for melting a sphere causes the solution to blow up at a finite time before complete melting takes place. This singular behaviour is characterised by the speed of the solid-melt interface and the flux of heat at the interface both becoming unbounded in the blow-up limit. In this paper, we use numerical simulation for a particular energy-conserving one-phase version of the problem to show that kinetic undercooling regularises this blow-up, so that the model with both surface tension and kinetic undercooling has solutions that are regular right up to complete melting. By examining the regime in which the dimensionless kinetic undercooling parameter is small, our results demonstrate how physically realistic solutions to this Stefan problem are consistent with observations of abrupt melting of nanoscaled particles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solution chemistry plays a significant role in the rate and type of foulant formed on heated industrial surfaces. This paper describes the effect of sucrose, silica (SiO2), Ca2+ and Mg2+ ions, and trans-aconitic acid on the kinetics and solubility of SiO2 and calcium oxalate monohydrate (COM) in mixed salt solutions containing sucrose and refines models previously proposed. The developed SiO2 models show that sucrose and SiO2 concentrations are the main parameters that determine apparent order (n) and apparent rate of reaction (k) and SiO2 solubility over a 24 h period. The calcium oxalate solubility model shows that while increasing [Mg2+] increases COM solubility, the reverse is so with increasing sucrose concentrations. The role of solution species on COM crystal habit is discussed and the appearance of the uncommon (001) face is explained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is aimed at further understanding the uppermost lipid-filled membranous layer (i.e. surface amorphous layer (SAL)) of articular cartilage and to develop a scientific framework for re-introducing lipids onto the surface of lipid-depleted articular cartilage (i.e. "resurfacing"). The outcome will potentially contribute to knowledge that will facilitate the repair of the articular surface of cartilage where degradation is limited to the loss of the lipids of the SAL only. The surface amorphous layer is of utmost importance to the effective load-spreading, lubrication, and semipermeability (which controls its fluid management, nutrient transport and waste removal) of articular cartilage in the mammalian joints. However, because this uppermost layer of cartilage is often in contact during physiological function, it is prone to wear and tear, and thus, is the site for damage initiation that can lead to the early stages of joint condition like osteoarthritis, and related conditions that cause pain and discomfort leading to low quality of life in patients. It is therefore imperative to conduct a study which offers insight into remedying this problem. It is hypothesized that restoration (resurfacing) of the surface amorphous layer can be achieved by re-introducing synthetic surface-active phospholipids (SAPL) into the joint space. This hypothesis was tested in this thesis by exposing cartilage samples whose surface lipids had been depleted to individual and mixtures of synthetic saturated and unsaturated phospholipids. The surfaces of normal, delipidized, and relipidized samples of cartilage were characterized for their structural integrity and functionality using atomic force microscope (AFM), confocal microscope (COFM), Raman spectroscopy, magnetic resonance imaging (MRI) with image processing in the MATLAB® environment and mechanical loading experiments. The results from AFM imaging, confocal microscopy, and Raman spectroscopy revealed a successful deposition of new surface layer on delipidized cartilage when incubated in synthetic phospholipids. The relipidization resulted in a significant improvement in the surface nanostructure of the artificially degraded cartilage, with the complete SAPL mixture providing better outcomes in comparison to those created with the single SAPL components (palmitoyl-oleoyl-phosphatidylcholine, POPC and dipalmitoyl-phosphatidylcholine, DPPC). MRI analysis revealed that the surface created with the complete mixture of synthetic lipids was capable of providing semipermeability to the surface layer of the treated cartilage samples relative to the normal intact surface. Furthermore, deformation energy analysis revealed that the treated samples were capable of delivering the elastic properties required for load bearing and recovery of the tissue relative to the normal intact samples, with this capability closer between the normal and the samples incubated in the complete lipid mixture. In conclusion, this thesis has established that it is possible to deposit/create a potentially viable layer on the surface of cartilage following degradation/lipid loss through incubation in synthetic lipid solutions. However, further studies will be required to advance the ideas developed in this thesis, for the development of synthetic lipid-based injections/drugs for treatment of osteoarthritis and other related joint conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of exercise training is to initiate desirable physiological adaptations that ultimately enhance physical work capacity. Optimal training prescription requires an individualized approach, with an appropriate balance of training stimulus and recovery and optimal periodization. Recovery from exercise involves integrated physiological responses. The cardiovascular system plays a fundamental role in facilitating many of these responses, including thermoregulation and delivery/removal of nutrients and waste products. As a marker of cardiovascular recovery, cardiac parasympathetic reactivation following a training session is highly individualized. It appears to parallel the acute/intermediate recovery of the thermoregulatory and vascular systems, as described by the supercompensation theory. The physiological mechanisms underlying cardiac parasympathetic reactivation are not completely understood. However, changes in cardiac autonomic activity may provide a proxy measure of the changes in autonomic input into organs and (by default) the blood flow requirements to restore homeostasis. Metaboreflex stimulation (e.g. muscle and blood acidosis) is likely a key determinant of parasympathetic reactivation in the short term (0–90 min post-exercise), whereas baroreflex stimulation (e.g. exercise-induced changes in plasma volume) probably mediates parasympathetic reactivation in the intermediate term (1–48 h post-exercise). Cardiac parasympathetic reactivation does not appear to coincide with the recovery of all physiological systems (e.g. energy stores or the neuromuscular system). However, this may reflect the limited data currently available on parasympathetic reactivation following strength/resistance-based exercise of variable intensity. In this review, we quantitatively analyse post-exercise cardiac parasympathetic reactivation in athletes and healthy individuals following aerobic exercise, with respect to exercise intensity and duration, and fitness/training status. Our results demonstrate that the time required for complete cardiac autonomic recovery after a single aerobic-based training session is up to 24 h following low-intensity exercise, 24–48 h following threshold-intensity exercise and at least 48 h following high-intensity exercise. Based on limited data, exercise duration is unlikely to be the greatest determinant of cardiac parasympathetic reactivation. Cardiac autonomic recovery occurs more rapidly in individuals with greater aerobic fitness. Our data lend support to the concept that in conjunction with daily training logs, data on cardiac parasympathetic activity are useful for individualizing training programmes. In the final sections of this review, we provide recommendations for structuring training microcycles with reference to cardiac parasympathetic recovery kinetics. Ultimately, coaches should structure training programmes tailored to the unique recovery kinetics of each individual.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is an increasing interest in the use of information technology as a participatory planning tool, particularly the use of geographical information technologies to support collaborative activities such as community mapping. However, despite their promise, the introduction of such technologies does not necessarily promote better participation nor improve collaboration. In part this can be attributed to a tendency for planners to focus on the technical considerations associated with these technologies at the expense of broader participation considerations. In this paper we draw on the experiences of a community mapping project with disadvantaged communities in suburban Australia to highlight the importance of selecting tools and techniques which support and enhance participatory planning. This community mapping project, designed to identify and document community-generated transport issues and solutions, had originally intended to use cadastral maps extracted from the government’s digital cadastral database as the foundation for its community mapping approach. It was quickly discovered that the local residents found the cadastral maps confusing as the maps lacked sufficient detail to orient them to their suburb (the study area). In response to these concerns and consistent with the project’s participatory framework, a conceptual base map based on resident’s views of landmarks of local importance was developed to support the community mapping process. Based on this community mapping experience we outline four key lessons learned regarding the process of community mapping and the place of geographical information technologies within this process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrostatic discharges have been identified as the most likely cause in a number of incidents of fire and explosion with unexplained ignitions. The lack of data and suitable models for this ignition mechanism creates a void in the analysis to quantify the importance of static electricity as a credible ignition mechanism. Quantifiable hazard analysis of the risk of ignition by static discharge cannot, therefore, be entirely carried out with our current understanding of this phenomenon. The study of electrostatics has been ongoing for a long time. However, it was not until the wide spread use of electronics that research was developed for the protection of electronics from electrostatic discharges. Current experimental models for electrostatic discharge developed for intrinsic safety with electronics are inadequate for ignition analysis and typically are not supported by theoretical analysis. A preliminary simulation and experiment with low voltage was designed to investigate the characteristics of energy dissipation and provided a basis for a high voltage investigation. It was seen that for a low voltage the discharge energy represents about 10% of the initial capacitive energy available and that the energy dissipation was within 10 ns of the initial discharge. The potential difference is greatest at the initial break down when the largest amount of the energy is dissipated. The discharge pathway is then established and minimal energy is dissipated as energy dissipation becomes greatly influenced by other components and stray resistance in the discharge circuit. From the initial low voltage simulation work, the importance of the energy dissipation and the characteristic of the discharge were determined. After the preliminary low voltage work was completed, a high voltage discharge experiment was designed and fabricated. Voltage and current measurement were recorded on the discharge circuit allowing the discharge characteristic to be recorded and energy dissipation in the discharge circuit calculated. Discharge energy calculations show consistency with the low voltage work relating to discharge energy with about 30-40% of the total initial capacitive energy being discharged in the resulting high voltage arc. After the system was characterised and operation validated, high voltage ignition energy measurements were conducted on a solution of n-Pentane evaporating in a 250 cm3 chamber. A series of ignition experiments were conducted to determine the minimum ignition energy of n-Pentane. The data from the ignition work was analysed with standard statistical regression methods for tests that return binary (yes/no) data and found to be in agreement with recent publications. The research demonstrates that energy dissipation is heavily dependent on the circuit configuration and most especially by the discharge circuit's capacitance and resistance. The analysis established a discharge profile for the discharges studied and validates the application of this methodology for further research into different materials and atmospheres; by systematically looking at discharge profiles of test materials with various parameters (e.g., capacitance, inductance, and resistance). Systematic experiments looking at the discharge characteristics of the spark will also help understand the way energy is dissipated in an electrostatic discharge enabling a better understanding of the ignition characteristics of materials in terms of energy and the dissipation of that energy in an electrostatic discharge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There are many variables to consider in the design of an electric motor. However, meeting the performance requirements for an electric vehicle drive may cause a designer to loose focus on its typical operation and hence fail to optimise the motor in the region where it processes the most power. This paper investigates operating requirements of electric vehicle motor drives using the University concept vehicle as an example. The paper outlines a methodology for determining primary operating region of a vehicle drive. The methodology is applied to standard driving cycles that are commonly used in the design and testing of vehicles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a design technique of a fully regenerative dynamic dynamometer. It incorporates an energy storage system to absorb the energy variation due to dynamometer transients. This allows the minimum power electronics requirement at the grid to supply the losses. The simulation results of the full system over a driving cycle show the amount of energy required to complete a driving cycle, therefore the size of the energy storage system can be determined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper examines a number of issues in sustainable energy generation and distribution, and explores avenues that are available for integration of our society’s energy supplies. In particular, the paper presents a way in which transport vehicle energy supplies could be integrated with distributed generation schemes to achieve synergistic and beneficial outcomes. The worldwide energy system contains fundamental problems that result directly from the use of unsustainable fuels and a lack of energy system integration. There is a need to adopt an integrated, sustainable energy system for our society. The adoption of distributed generation could result in beneficial restructuring of the energy trade, and a change in the role of energy providers. Inherent benefits in distributed generation schemes would directly combat barriers to installation of renewable generation facilities, which might prove distributed renewable energy sources to be more feasible. The presence of fuel cells, batteries, power electronic inverters and intelligent controls in vehicles of the future provides many opportunities for the integration of vehicle energy supplies into a distributed generation scheme. In such a system, vehicles could play a major role in power generation and storage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper examines a number of issues in sustainable energy generation and distribution, and explores avenues that are available for integration of our society’s energy supplies. In particular, the paper presents a way in which transport vehicle energy supplies could be integrated with distributed generation schemes to achieve synergistic and beneficial outcomes. The worldwide energy system contains fundamental problems that result directly from the use of unsustainable fuels and a lack of energy system integration. There is a need to adopt an integrated, sustainable energy system for our society. The adoption of distributed generation could result in beneficial restructuring of the energy trade, and a change in the role of energy providers. Inherent benefits in distributed generation schemes would directly combat barriers to installation of renewable generation facilities, which might prove distributed renewable energy sources to be more feasible. The presence of fuel cells, batteries, power electronic inverters and intelligent controls in vehicles of the future provides many opportunities for the integration of vehicle energy supplies into a distributed generation scheme. In such a system, vehicles could play a major role in power generation and storage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Internationally, Industry-School Partnerships (ISPs) are a ubiquitous government approach for enabling school to work transitions. Significant benefits of ISPs for centralised bureaucracies that are seeking to address common educational problems include: i) cost reduction; ii) supply to geographically dispersed locations, and; iii) industry access to innovative education solutions. In Queensland, there exists a government led ISP, the Gateway to Industry Schools Program. Under this initiative is the Queensland Minerals and Energy Academy, a lead industry organisation for 34 schools and 17 multinational sponsor companies. Acquiring an understanding of this strategic ISP is critical, given the current Resources Industry boom, and the workforce skills shortage experienced in Australia. This review paper adopts Ecological Systems Theory as a lens to understand the inner workings of ISPs. Acknowledging that ISPs will remain a key feature of government policy, this paper seeks to further illuminate the role of ISPs in transitioning young people from school to the working world.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electricity is the cornerstone of modern life. It is essential to economic stability and growth, jobs and improved living standards. Electricity is also the fundamental ingredient for a dignified life; it is the source of such basic human requirements as cooked food, a comfortable living temperature and essential health care. For these reasons, it is unimaginable that today's economies could function without electricity and the modern energy services that it delivers. Somewhat ironically, however, the current approach to electricity generation also contributes to two of the gravest and most persistent problems threatening the livelihood of humans. These problems are anthropogenic climate change and sustained human poverty. To address these challenges, the global electricity sector must reduce its reliance on fossil fuel sources. In this context, the object of this research is twofold. Initially it is to consider the design of the Renewable Energy (Electricity) Act 2000 (Cth) (Renewable Electricity Act), which represents Australia's primary regulatory approach to increase the production of renewable sourced electricity. This analysis is conducted by reference to the regulatory models that exist in Germany and Great Britain. Within this context, this thesis then evaluates whether the Renewable Electricity Act is designed effectively to contribute to a more sustainable and dignified electricity generation sector in Australia. On the basis of the appraisal of the Renewable Electricity Act, this thesis contends that while certain aspects of the regulatory regime have merit, ultimately its design does not represent an effective and coherent regulatory approach to increase the production of renewable sourced electricity. In this regard, this thesis proposes a number of recommendations to reform the existing regime. These recommendations are not intended to provide instantaneous or simple solutions to the current regulatory regime. Instead, the purpose of these recommendations is to establish the legal foundations for an effective regulatory regime that is designed to increase the production of renewable sourced electricity in Australia in order to contribute to a more sustainable and dignified approach to electricity production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research investigated airborne particle characteristics and their dynamics inside and around the envelope of mechanically ventilated office buildings, together with building thermal conditions and energy consumption. Based on these, a comprehensive model was developed to facilitate the optimisation of building heating, ventilation and air conditioning systems, in order to protect the health of their occupants and minimise the energy requirements of these buildings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability of metals to store or trap considerable amounts of energy, and thus exist in a non-equilibrium or metastable state, is very well known in metallurgy; however, such behaviour, which is intimately connected with the defect character of metals, has been largely ignored in noble metal surface electrochemistry. Techniques for generating unusually high energy surface states for gold, and the unusual voltammetric responses of such states, are outlined. The surprisingly high (and complex) electrocatalytic activity of gold in aqueous media is attributed to the presence of a range of such non-equilibrium states as the vital entities at active sites on conventional gold surfaces. The possible relevance of these ideas to account for the remarkable catalytic activity of oxide-supported gold microparticles is briefly outlined.