558 resultados para Real-world
Resumo:
The rapid development of the World Wide Web has created massive information leading to the information overload problem. Under this circumstance, personalization techniques have been brought out to help users in finding content which meet their personalized interests or needs out of massively increasing information. User profiling techniques have performed the core role in this research. Traditionally, most user profiling techniques create user representations in a static way. However, changes of user interests may occur with time in real world applications. In this research we develop algorithms for mining user interests by integrating time decay mechanisms into topic-based user interest profiling. Time forgetting functions will be integrated into the calculation of topic interest measurements on in-depth level. The experimental study shows that, considering temporal effects of user interests by integrating time forgetting mechanisms shows better performance of recommendation.
Resumo:
In this paper, we present WebPut, a prototype system that adopts a novel web-based approach to the data imputation problem. Towards this, Webput utilizes the available information in an incomplete database in conjunction with the data consistency principle. Moreover, WebPut extends effective Information Extraction (IE) methods for the purpose of formulating web search queries that are capable of effectively retrieving missing values with high accuracy. WebPut employs a confidence-based scheme that efficiently leverages our suite of data imputation queries to automatically select the most effective imputation query for each missing value. A greedy iterative algorithm is proposed to schedule the imputation order of the different missing values in a database, and in turn the issuing of their corresponding imputation queries, for improving the accuracy and efficiency of WebPut. Moreover, several optimization techniques are also proposed to reduce the cost of estimating the confidence of imputation queries at both the tuple-level and the database-level. Experiments based on several real-world data collections demonstrate not only the effectiveness of WebPut compared to existing approaches, but also the efficiency of our proposed algorithms and optimization techniques.
Resumo:
Agent-based modelling (ABM), like other modelling techniques, is used to answer specific questions from real world systems that could otherwise be expensive or impractical. Its recent gain in popularity can be attributed to some degree to its capacity to use information at a fine level of detail of the system, both geographically and temporally, and generate information at a higher level, where emerging patterns can be observed. This technique is data-intensive, as explicit data at a fine level of detail is used and it is computer-intensive as many interactions between agents, which can learn and have a goal, are required. With the growing availability of data and the increase in computer power, these concerns are however fading. Nonetheless, being able to update or extend the model as more information becomes available can become problematic, because of the tight coupling of the agents and their dependence on the data, especially when modelling very large systems. One large system to which ABM is currently applied is the electricity distribution where thousands of agents representing the network and the consumers’ behaviours are interacting with one another. A framework that aims at answering a range of questions regarding the potential evolution of the grid has been developed and is presented here. It uses agent-based modelling to represent the engineering infrastructure of the distribution network and has been built with flexibility and extensibility in mind. What distinguishes the method presented here from the usual ABMs is that this ABM has been developed in a compositional manner. This encompasses not only the software tool, which core is named MODAM (MODular Agent-based Model) but the model itself. Using such approach enables the model to be extended as more information becomes available or modified as the electricity system evolves, leading to an adaptable model. Two well-known modularity principles in the software engineering domain are information hiding and separation of concerns. These principles were used to develop the agent-based model on top of OSGi and Eclipse plugins which have good support for modularity. Information regarding the model entities was separated into a) assets which describe the entities’ physical characteristics, and b) agents which describe their behaviour according to their goal and previous learning experiences. This approach diverges from the traditional approach where both aspects are often conflated. It has many advantages in terms of reusability of one or the other aspect for different purposes as well as composability when building simulations. For example, the way an asset is used on a network can greatly vary while its physical characteristics are the same – this is the case for two identical battery systems which usage will vary depending on the purpose of their installation. While any battery can be described by its physical properties (e.g. capacity, lifetime, and depth of discharge), its behaviour will vary depending on who is using it and what their aim is. The model is populated using data describing both aspects (physical characteristics and behaviour) and can be updated as required depending on what simulation is to be run. For example, data can be used to describe the environment to which the agents respond to – e.g. weather for solar panels, or to describe the assets and their relation to one another – e.g. the network assets. Finally, when running a simulation, MODAM calls on its module manager that coordinates the different plugins, automates the creation of the assets and agents using factories, and schedules their execution which can be done sequentially or in parallel for faster execution. Building agent-based models in this way has proven fast when adding new complex behaviours, as well as new types of assets. Simulations have been run to understand the potential impact of changes on the network in terms of assets (e.g. installation of decentralised generators) or behaviours (e.g. response to different management aims). While this platform has been developed within the context of a project focussing on the electricity domain, the core of the software, MODAM, can be extended to other domains such as transport which is part of future work with the addition of electric vehicles.
Resumo:
Object classification is plagued by the issue of session variation. Session variation describes any variation that makes one instance of an object look different to another, for instance due to pose or illumination variation. Recent work in the challenging task of face verification has shown that session variability modelling provides a mechanism to overcome some of these limitations. However, for computer vision purposes, it has only been applied in the limited setting of face verification. In this paper we propose a local region based intersession variability (ISV) modelling approach, and apply it to challenging real-world data. We propose a region based session variability modelling approach so that local session variations can be modelled, termed Local ISV. We then demonstrate the efficacy of this technique on a challenging real-world fish image database which includes images taken underwater, providing significant real-world session variations. This Local ISV approach provides a relative performance improvement of, on average, 23% on the challenging MOBIO, Multi-PIE and SCface face databases. It also provides a relative performance improvement of 35% on our challenging fish image dataset.
Resumo:
An Artificial Neural Network (ANN) is a computational modeling tool which has found extensive acceptance in many disciplines for modeling complex real world problems. An ANN can model problems through learning by example, rather than by fully understanding the detailed characteristics and physics of the system. In the present study, the accuracy and predictive power of an ANN was evaluated in predicting kinetic viscosity of biodiesels over a wide range of temperatures typically encountered in diesel engine operation. In this model, temperature and chemical composition of biodiesel were used as input variables. In order to obtain the necessary data for model development, the chemical composition and temperature dependent fuel properties of ten different types of biodiesels were measured experimentally using laboratory standard testing equipments following internationally recognized testing procedures. The Neural Networks Toolbox of MatLab R2012a software was used to train, validate and simulate the ANN model on a personal computer. The network architecture was optimised following a trial and error method to obtain the best prediction of the kinematic viscosity. The predictive performance of the model was determined by calculating the absolute fraction of variance (R2), root mean squared (RMS) and maximum average error percentage (MAEP) between predicted and experimental results. This study found that ANN is highly accurate in predicting the viscosity of biodiesel and demonstrates the ability of the ANN model to find a meaningful relationship between biodiesel chemical composition and fuel properties at different temperature levels. Therefore the model developed in this study can be a useful tool in accurately predict biodiesel fuel properties instead of undertaking costly and time consuming experimental tests.
Resumo:
This practice-led research project investigates how new postcolonial conditions require new methods of critique to fully engage with the nuances of real world, 'lived' experiences. Framed by key aspects of postcolonial theory, this project examines contemporary artists' contributions to investigations of identity, race, ethnicity, otherness and diaspora, as well as questions of locality, nationality, and transnationality. Approaching these issues through the lens of my own experience as an artist and subject, it results in a body of creative work and a written exegesis that creatively and critically examine the complexities, ambiguities and ambivalences of the contemporary postcolonial condition.
Resumo:
Two key elements of education for sustainability (EfS) are action-competence, and the importance of place and experiencing the natural world. These elements emphasise and depend on the relationship between learners and their real world contexts, and have been incorporated to some extent into the sustainability cross-curricular perspective of the new Australian curriculum. Given the importance of real-world experiential learning in EfS, what is to be made of the use of multi-user virtual worlds in EfS? We went with our preservice secondary science teachers to the very appealing virtual world Quest Atlantis, which we are using in this paper as an example to explore the value of virtual worlds in EfS. In assessing the virtual world of Quest Atlantis against Australia’s Sustainability Curriculum Framework, many areas of coherence are evident relating to world viewing, systems thinking and futures thinking, knowledge of ecological and human systems, and implementing and reflecting on the consequences of actions. The power and appeal of these virtual experiences in developing these knowledges is undeniable. However there is some incoherence between the elements of EfS as expressed in the Sustainability Curriculum Framework and the experience of QA where learners are not acting in their real world, or developing connection with real place. This analysis highlights both the value and some limitations of virtual worlds as a venue for EfS.
Resumo:
Learning programming is known to be difficult. One possible reason why students fail programming is related to the fact that traditional learning in the classroom places more emphasis on lecturing the material instead of applying the material to a real application. For some students, this teaching model may not catch their interest. As a result they may not give their best effort to understand the material given. Seeing how the knowledge can be applied to real life problems can increase student interest in learning. As a consequence, this will increase their effort to learn. Anchored learning that applies knowledge to solve real life problems may be the key to improving student performance. In anchored learning, it is necessary to provide resources that can be accessed by the student as they learn. These resources can be provided by creating an Intelligent Tutoring System (ITS) that can support the student when they need help or experience a problem. Unfortunately, there is no ITS developed for the programming domain that has incorporated anchored learning in its teaching system. Having an ITS that supports anchored learning will not only be able to help the student learn programming effectively but will also make the learning process more enjoyable. This research tries to help students learn C# programming using an anchored learning ITS named CSTutor. Role playing is used in CSTutor to present a real world situation where they develop their skills. A knowledge base using First Order Logic is used to represent the student's code and to give feedback and assistance accordingly.
Resumo:
Many emerging economies are dangling the patent system to stimulate bio-technological innovations with the ultimate premise that these will improve their economic and social growth. The patent system mandates full disclosure of the patented invention in exchange of a temporary exclusive patent right. Recently, however, patent offices have fallen short of complying with such a mandate, especially for genetic inventions. Most patent offices provide only static information about disclosed patent sequences and even some do not keep track of the sequence listing data in their own database. The successful partnership of QUT Library and Cambia exemplifies advocacy in Open Access, Open Innovation and User Participation. The library extends its services to various departments within the university, builds and encourages research networks to complement skills needed to make a contribution in the real world.
Resumo:
Several websites utilise a rule-base recommendation system, which generates choices based on a series of questionnaires, for recommending products to users. This approach has a high risk of customer attrition and the bottleneck is the questionnaire set. If the questioning process is too long, complex or tedious; users are most likely to quit the questionnaire before a product is recommended to them. If the questioning process is short; the user intensions cannot be gathered. The commonly used feature selection methods do not provide a satisfactory solution. We propose a novel process combining clustering, decisions tree and association rule mining for a group-oriented question reduction process. The question set is reduced according to common properties that are shared by a specific group of users. When applied on a real-world website, the proposed combined method outperforms the methods where the reduction of question is done only by using association rule mining or only by observing distribution within the group.
Resumo:
We introduce Kamouflage: a new architecture for building theft-resistant password managers. An attacker who steals a laptop or cell phone with a Kamouflage-based password manager is forced to carry out a considerable amount of online work before obtaining any user credentials. We implemented our proposal as a replacement for the built-in Firefox password manager, and provide performance measurements and the results from experiments with large real-world password sets to evaluate the feasibility and effectiveness of our approach. Kamouflage is well suited to become a standard architecture for password managers on mobile devices.
Resumo:
We revisit the venerable question of access credentials management, which concerns the techniques that we, humans with limited memory, must employ to safeguard our various access keys and tokens in a connected world. Although many existing solutions can be employed to protect a long secret using a short password, those solutions typically require certain assumptions on the distribution of the secret and/or the password, and are helpful against only a subset of the possible attackers. After briefly reviewing a variety of approaches, we propose a user-centric comprehensive model to capture the possible threats posed by online and offline attackers, from the outside and the inside, against the security of both the plaintext and the password. We then propose a few very simple protocols, adapted from the Ford-Kaliski server-assisted password generator and the Boldyreva unique blind signature in particular, that provide the best protection against all kinds of threats, for all distributions of secrets. We also quantify the concrete security of our approach in terms of online and offline password guesses made by outsiders and insiders, in the random-oracle model. The main contribution of this paper lies not in the technical novelty of the proposed solution, but in the identification of the problem and its model. Our results have an immediate and practical application for the real world: they show how to implement single-sign-on stateless roaming authentication for the internet, in a ad-hoc user-driven fashion that requires no change to protocols or infrastructure.
Resumo:
Working as a sport psychologist with Olympic athletes requires a clear understanding of a broad range of multifaceted individual, group, situational, and environmental issues, all of which have the ability to impact upon performance. This article provides an overview of some of the common yet vital issues that have been observed to arise when working with Olympic Winter Games athletes and teams; what to expect, how to recognise them when they occur, and why they are important to prepare for in the context of supporting athletes to achieve the best performance they can at an Olympic Games. Aimed at the emerging sport psychology practitioner, discussion of issues such as performing under pressure, dealing with distractions, adjusting to external factors, team culture, and servicing models creates an informal set of “practical guidelines” based upon real-world experiences that can also be applied to other major sporting competitions.
Resumo:
In this paper we describe the benefits of a performance-based approach to modeling biological systems for use in robotics. Specifically, we describe the RatSLAM system, a computational model of the navigation processes thought to drive navigation in a part of the rodent brain called the hippocampus. Unlike typical computational modeling approaches, which focus on biological fidelity, RatSLAM’s development cycle has been driven primarily by performance evaluation on robots navigating in a wide variety of challenging, real world environments. We briefly describe three seminal results, two in robotics and one in biology. In addition, we present current research on brain-inspired learning algorithms with the aim of enabling a robot to autonomously learn how best to use its sensor suite to navigate, without requiring any specific knowledge of the robot, sensor types or environment characteristics. Our aim is to drive discussion on the merits of practical, performance-focused implementations of biological models in robotics.
Resumo:
Motivation Awareness is an integral part of remote collaborative work and has been an important theme within the CSCW research. Our project aims at understanding and mediating non-verbal cues between remote participants involved in a design project. Research approach Within the AMIDA project we focus on distributed 'cooperative design' teams. We especially focus on the 'material' signals - signals in which people communicate through material artefacts, locations and their embodied actions. We apply an ethnographic approach to understand the role of physical artefacts in co-located naturalistic design setting. Based on the results we will generate important implications to support remote design work. We plan to develop a mixed-reality interface supported by a shared awareness display. This awareness display will provide information about the activities happening in the design room to remotely located participants. Findings/Design Our preliminary investigation with real-world design teams suggests that both the materiality of designers' work settings and their social practices play an important role in understanding these material signals that are at play. Originality/Value Most research supporting computer mediated communication have focused on either face-to-face or linguistically oriented communication paradigms. Our research focuses on mediating the non-verbal, material cues for supporting collaborative activities without impoverishing what designers do in their day to day working lives. Take away message An ethnographic approach allows us to understand the naturalistic practices of design teams, which can lead to designing effective technologies to support group work. In that respect, the findings of our research will have a generic value beyond the application domain chosen (design teams).