393 resultados para Material testing
Resumo:
The fire resistance characteristic of LSF wall systems mainly depends on the protective linings in use, commonly gypsum plasterboards. However, unclassified boards with varying composition and more notably with ambiguous thermal properties are increasingly becoming available in the market. Therefore a study was undertaken with an aim to set minimum standards for fire protective boards used in LSF wall applications. This paper presents the details of this study based on material characterisation and finite element thermal modelling of the most commonly used fire protective board, gypsum plasterboards, to address these critical issues related to fire safety design. In the material characterisation phase of this study, thermal properties of three different gypsum plasterboards manufactured in Australia were measured, analysed and compared. Subsequently, it proposes a thermal property based “k-factor” capable of giving an overall measure of the fire performance of boards, so that it can be used in appropriately classifying fire protective boards. As it is not known how this factor relates to the overall fire performance of LSF wall systems, numerical models were also developed and used to simulate the performance of LSF walls exposed to the standard fire. Finally, a correlation between time-temperature profiles from numerical analyses and calculated k-factors was established.
Resumo:
Historically, school leaders have occupied a somewhat ambiguous position within networks of power. On the one hand, they appear to be celebrated as what Ball (2003) has termed the ‘new hero of educational reform'; on the other, they are often ‘held to account’ through those same performative processes and technologies. These have become compelling in schools and principals are ‘doubly bound’ through this. Adopting a Foucauldian notion of discursive production, this paper addresses the ways that the discursive ‘field’ of ‘principal’ (within larger regimes of truth such as schools, leadership, quality and efficiency) is produced. It explores how individual principals understand their roles and ethics within those practices of audit emerging in school governance, and how their self-regulation is constituted through NAPLAN – the National Assessment Program, Literacy and Numeracy. A key effect of NAPLAN has been the rise of auditing practices that change how education is valued. Open-ended interviews with 13 primary and secondary school principals from Western Australia, South Australia and New South Wales asked how they perceived NAPLAN's impact on their work, their relationships within their school community and their ethical practice.
Resumo:
Overview This report, published in conjunction with a summary overview of results of rounds 1–6, is the sixth in a series of laboratory-based evaluations of rapid diagnostic tests (RDTs) for malaria. It provides a comparative measure of their performance in a standardized way to distinguish between well and poorly performing tests. It can be used by malaria control programmes and guide WHO procurement recommendations for these diagnostic tools. The evaluation reported here was a joint project of the WHO Global Malaria Programme, the Foundation for Innovative New Diagnostics (FIND) and the United States Centers for Disease Control and Prevention (CDC) within the WHO-FIND Malaria RDT Evaluation Programme. The project was financed by FIND through a grant from UNITAID.
Resumo:
The unknown future is a challenge to educators in preparing young people for life post school. While history can be said to repeat itself, the reality is that each generation is faced with new challenges and threats. Therefore, the challenge for contemporary schooling is to prepare students to live in a fast paced, complex world where threats such as terrorism, cyberbullying and depleted resources are juggled with high stakes testing and curriculum accountability. This presentation draws on the notion of a future of supercomplexity while critically examining current pastoral care delivery in schools to develop a new model of practice in preparing students for an unknown future.
Resumo:
The exhibition material matters brings together new works by Amy Commins, Jamie Behrendorff, Grace Kevill-Davies, Zoe Knight, Ruth McConchie and Courtney Pedersen – Brisbane-based artists whose experimental practices engage with materiality in specific ways. These works explore incidental viewpoints, suspended moments, constructed environments, cultural memory and repetitive processes. The artists in the exhibition investigate the temporal in terms of making and experiencing art in various modes – installation, sculpture, video, sound and works on paper. Through these material engagements, the artists question and re-imagine ways of connecting in the contemporary world, drawing together considerations of humour, history, politics, nature and everyday life. This exhibition was part of the 2014 Brisbane Experimental Art Festival, held at the Judith Wright Centre of Contemporary Arts.
Resumo:
Functional Imagery Training (FIT) is a new theory-based, manualized intervention that trains positive goal imagery. Multisensory episodic imagery of proximal personal goals is elicited and practised, to sustain motivation and compete with less functional cravings. This study tested the impact of a single session of FIT plus a booster phone call on snacking. In a stepped-wedge design, 45 participants who wanted to lose weight or reduce snacking were randomly assigned to receive a session of FIT immediately or after a 2-week delay. High-sugar and high-fat snacks were recorded using timeline follow back for the previous 3 days, at baseline, 2 and 4 weeks. At 2 weeks, snacking was lower in the immediate group than in the delayed group, and the reduction after FIT was replicated in the delayed group between 2 and 4 weeks. Frequencies of motivational thoughts about snack reduction rose following FIT for both groups, and this change correlated with reductions in snacking and weight loss. By showing that FIT can support change in eating behaviours, these findings show its potential as a motivational intervention for weight management.
Resumo:
Lead germanate-graphene nanosheets (PbGeO3-GNS) composites have been prepared by an efficient one-step, in-situ hydrothermal method and were used as anode materials for Li-ion batteries (LIBs). The PbGeO3 nanowires, around 100–200 nm in diameter, are highly encapsulated in a graphene matrix. The lithiation and de-lithiation reaction mechanisms of the PbGeO3 anode during the charge-discharge processes have been investigated by X-ray diffraction and electrochemical characterization. Compared with pure PbGeO3 anode, dramatic improvements in the electrochemical performance of the composite anodes have been obtained. In the voltage window of 0.01–1.50 V, the composite anode with 20 wt.% GNS delivers a discharge capacity of 607 mAh g−1 at 100 mA g−1 after 50 cycles. Even at a high current density of 1600 mA g−1, a capacity of 406 mAh g−1 can be achieved. Therefore, the PbGeO3-GNS composite can be considered as a potential anode material for lithium ion batteries.
Resumo:
BaZr0.8Y0.2O3- (BZY)-NiO composite powders with different BZY-NiO weight ratios were prepared by a combustion method as anodes for proton-conducting solid oxide fuel cells (SOFCs). After heating to 1100C for 6 h, the composite powders were made of a well-dispersed mixture of two phases, BZY and NiO. Chemical stability tests showed that the BZY-NiO anodic powders had good stability against CO2, whereas comparative tests under the same conditions showed degradation for BaCe0.7Zr 0.1Y0.2O3--NiO, which is at present the most used anode material for proton-conducting SOFCs. Area specific resistance (ASR) measurements for BZY-NiO anodes showed that their electrochemical performance depended on the BZY-NiO weight ratio. The best performance was obtained for the anode containing 50 wt BZY and 50 wt NiO, which showed the smallest ASR values in the whole testing temperature range (0.37 cm2 at 600C). The 50 wt BZY and 50 wt NiO anode prepared by combustion also showed superior performance than that of the BZY-NiO anode conventionally made by a mechanical mixing route, as well as that of Pt.
Resumo:
The cyclic-oxidation behavior of Ti3SiC2-base material was studied at 1100°C in air. Scale spallation and weight loss were not observed in the present tests and the weight gain would just continue if the experiments were not interrupted. The present results demonstrated that the scale growth on Ti3SiC2-base material obeyed a parabolic rate law up to 20 cycles. It then changed to a linear rate with further increasing cycles. The scales formed on the Ti3SiC2base material were composed of an inward-growing, fine-grain mixture of Ti022 + SiO2 and an outward-growing, coarse-grain TiO2. Theoretical calculations show that the mismatch in thermal expansion coefficients between the inner scale and Ti3SiC2-base matrix is small. The outer TiO2 layer was under very low compressive stress, while the inner TiO2 + SiO2 layer was under tensile stress during cooling. Scale spaliation is, therefore, not expected and the scale formed on Ti3SiC2-base material is adherent and resistant to cyclic oxidation.
Resumo:
Cracks in civil structures can result in premature failure due to material degradation and can result in both financial loss and environmental consequences. This thesis reports an effective technique using Acoustic Emission (AE) technique to assess the severity of the crack propagation in steel structures. The outcome of this work confirms that combination of AE parametric analysis and signal processing techniques can be used to evaluate crack propagation under different loading configurations. The technique has potential application to assess and monitor the condition of civil structures.
Resumo:
Methylammonium bismuth (III) iodide single crystals and films have been developed and investigated. We have further presented the first demonstration of using this organic–inorganic bismuth-based material to replace lead/tin-based perovskite materials in solution-processable solar cells. The organic–inorganic bismuth-based material has advantages of non-toxicity, ambient stability, and low-temperature solution-processability, which provides a promising solution to address the toxicity and stability challenges in organolead- and organotin-based perovskite solar cells. We also demonstrated that trivalent metal cation-based organic–inorganic hybrid materials can exhibit photovoltaic effect, which may inspire more research work on developing and applying organic-inorganic hybrid materials beyond divalent metal cations (Pb (II) and Sn (II)) for solar energy applications.
Resumo:
Recent technical advances have enabled for the first time, reliable in vitro culture of prostate cancer samples as prostate cancer organoids. This breakthrough provides the significant possibility of high throughput drug screening covering the spectrum of prostate cancer phenotypes seen clinically. These advances will enable precision medicine to become a reality, allowing patient samples to be screened for effective therapeutics ex vivo, with tailoring of treatments specific to that individual. This will hopefully lead to enhanced clinical outcomes, avoid morbidity due to ineffective therapies and improve the quality of life in men with advanced prostate cancer.
Resumo:
This paper presents an experimental investigation on the lateral impact performance of axially loaded concrete-filled double-skin tube (CFDST) columns. These columns have desirable structural and constructional properties and have been used as columns in building, legs of off shore platforms and as bridge piers. Since they could be vulnerable to impact from passing vessels or vehicles, it is necessary to understand their behaviour under lateral impact loads. With this in mind, an experimental method employing an innovative instrumented horizontal impact testing system (HITS) was developed to apply lateral impact loads whilst the column maintained a static axial pre-loading to examine the failure mechanism and key response parameters of the column. These included the time histories of impact force, reaction forces, global lateral deflection and permanent local buckling profile. Eight full scale columns were tested for key parameters including the axial load level and impact location. Based on the test data, the failure mode, peak impact force, impact duration, peak reaction forces, reaction force duration, column maximum and residual global deflections and column local buckling length, depth and width under varying conditions are analysed and discussed. It is evident that the innovative HITS can successfully test structural columns under the combination of axial pre-loading and impact loading. The findings on the lateral impact response of the CFDST columns can serve as a benchmark reference for their future analysis and design.
Resumo:
Highly ordered mesoporous carbon (MC) has been synthesized from sucrose, a non-toxic and costeffective source of carbon. X-ray diffraction, N2 adsorption–desorption isotherm and transmission electron micrograph (TEM) were used to characterize the MC. The XRD patterns show the formation of highly ordered mesoporous structures of SBA15 and mesoporous carbon. The N2 adsorptiondesorption isotherms suggest that the MC exhibits a narrow pore-size distribution with high surface area of 1559 m2/g. The potential application of MC as a novel electrode material was investigated using cyclic voltammetry for riboflavin (vitamin B2) and dopamine. MC-modified glassy carbon electrode (MC/GC) shows increase in peak current compared to GC electrode in potassium ferricyanide which clearly suggest that MC/GC possesses larger electrode area (1.8 fold) compared with bare GC electrode. The electrocatalytic behavior of MC/GC was investigated towards the oxidation of riboflavin (vitamin B2) and dopamine using cyclic voltammetry which show larger oxidation current compared to unmodified electrode and thus MC/GC may have the potential to be used as a chemically modified electrode.
Resumo:
This research constructed a readability measurement for French speakers who view English as a second language. It identified the true cognates, which are the similar words from these two languages, as an indicator of the difficulty of an English text for French people. A multilingual lexical resource is used to detect true cognates in text, and Statistical Language Modelling to predict the predict the readability level. The proposed enhanced statistical language model is making a step in the right direction by improving the accuracy of readability predictions for French speakers by up to 10% compared to state of the art approaches. The outcome of this study could accelerate the learning process for French speakers who are studying English. More importantly, this study also benefits the readability estimation research community, presenting an approach and evaluation at sentence level as well as innovating with the use of cognates as a new text feature.