479 resultados para Interdisciplinary approach to knowledge
Resumo:
A probabilistic method is proposed to evaluate voltage quality of grid-connected photovoltaic (PV) power systems. The random behavior of solar irradiation is described in statistical terms and the resulting voltage fluctuation probability distribution is then derived. Reactive power capabilities of the PV generators are then analyzed and their operation under constant power factor mode is examined. By utilizing the reactive power capability of the PV-generators to the full, it is shown that network voltage quality can be greatly enhanced.
Resumo:
Aim A recent Monte Carlo based study has shown that it is possible to design a diode that measures small field output factors equivalent to that in water. This is accomplished by placing an appropriate sized air gap above the silicon chip (1) with experimental results subsequently confirming that a particular Monte Carlo design was accurate (2). The aim of this work was to test if a new correction-less diode could be designed using an entirely experimental methodology. Method: All measurements were performed on a Varian iX at a depth of 5 cm, SSD of 95 cm and field sizes of 5, 6, 8, 10, 20 and 30 mm. Firstly, the experimental transfer of kq,clin,kq,msr from a commonly used diode detector (IBA, stereotactic field diode (SFD)) to another diode detector (Sun Nuclear, unshielded diode, (EDGEe)) was tested. These results were compared to Monte Carlo calculated values of the EDGEe. Secondly, the air gap above the EDGEe silicon chip was optimised empirically. Nine different air gap “tops” were placed above the EDGEe (air depth = 0.3, 0.6, 0.9 mm; air width = 3.06, 4.59, 6.13 mm). The sensitivity of the EDGEe was plotted as a function of air gap thickness for the field sizes measured. Results: The transfer of kq,clin,kq,msr from the SFD to the EDGEe was correct to within the simulation and measurement uncertainties. The EDGEe detector can be made “correction-less” for field sizes of 5 and 6 mm, but was ∼2% from being “correction-less” at field sizes of 8 and 10 mm. Conclusion Different materials will perturb small fields in different ways. A detector is only “correction-less” if all these perturbations happen to cancel out. Designing a “correction-less” diode is a complicated process, thus it is reasonable to expect that Monte Carlo simulations should play an important role.
Resumo:
Agent-based modeling and simulation (ABMS) may fit well with entrepreneurship research and practice because the core concepts and basic premises of entrepreneurship coincide with the characteristics of ABMS. However, it is difficult to find cases where ABMS is applied to entrepreneurship research. To apply ABMS to entrepreneurship and organization studies, designing a conceptual model is important; thus to effectively design a conceptual model, various mixed method approaches are being attempted. As a new mixed method approach to ABMS, this study proposes a bibliometric approach to designing agent based models, which establishes and analyzes a domain corpus. This study presents an example on the venture creation process using the bibliometric approach. This example shows us that the results of the multi-agent simulations on the venturing process based on the bibliometric approach are close to each nation’s surveyed data on the venturing activities. In conclusion, by the bibliometric approach proposed in this study, all the agents and the agents’ behaviors related to a phenomenon can be extracted effectively, and a conceptual model for ABMS can be designed with the agents and their behaviors. This study contributes to the entrepreneurship and organization studies by promoting the application of ABMS.
Resumo:
Existing research and best practice were utilized to develop the Project Management, Stakeholder Engagement and Change Facilitation (PSC) approach to road safety infrastructure projects. Two case studies involving Queensland Transport and Main Roads demonstrated that use of the PSC has potential to create synergies for projects undertaken by multi-disciplinary road safety groups, and to complement Safe System projects and philosophy. The case studies were the North West Road Safety Alliance project, and the implementation of Road Safety Audit policy, and utilised a mix of qualitative and quantitative methods including interviews and surveys.
Resumo:
The successful management of workplace safety has many benefits for employees, employers and the community. Similar to other areas of job performance, safety performance can be enhanced through appropriate and well-designed training. The foundation of the development of effective training is a thorough training needs analysis (TNA). Currently, the application of psychometrically valid TNA practices for the management of workplace safety is an under-researched topic and limited guidance is available for implementing appropriate strategies. To address this gap in the literature, this chapter will provide an overview of TNA practices, including the purpose and benefits associated with implementing the systematic procedure. A case study will then be presented to illustrate how the TNA process was successfully applied to investigate the training needs of Australasian rail incident investigators to achieve an industry-approved national training package. Recommendations will be made to assist practitioners with implementing TNA practices with the goal of enhancing workplace safety management through targeted workforce development.
Resumo:
The conventional approach to setting a milling unit is essentially based on the desire to achieve a particular bagasse moisture content or fibre fill in each nip of the mill. This approach relies on the selection of the speed at which the mill will operate for the selected fibre rate. There is rarely any checking that the selected speed or the selected fibre fill is achieved and the same set of assumptions is generally carried over to use again in the next year. The conventional approach largely ignores the fact that the selection of mill settings actually determines the speed at which the mill will operate. Making an adjustment with the intent of changing the performance of the mill often also changes the speed of the mill as an unintended consequence. This paper presents an alternative approach to mill setting. The approach discussed makes use of mill feeding theory to define the relationship between fibre rate, mill speed and mill settings and uses that theory to provide an alternative means of determining the settings in some nips of the mill. Mill feeding theory shows that, as the feed work opening reduces, roll speed increases. The theory also shows that there is an optimal underfeed opening and Donnelly chute exit opening that will minimise roll speed and that the current South African guidelines appear to be well away from those optimal values.
Resumo:
Product Ecosystem theory is an emerging theory that shows that disruptive “game changing” innovation is only possible when the entire ecosystem is considered. When environmental variables change faster than products or services can adapt, disruptive innovation is required to keep pace. This has many parallels with natural ecosystems where species that cannot keep up with changes to the environment will struggle or become extinct. In this case the environment is the city, the environmental pressures are pollution and congestion, the product is the car and the product ecosystem is comprised of roads, bridges, traffic lights, legislation, refuelling facilities etc. Each one of these components is the responsibility of a different organisation and so any change that affects the whole ecosystem requires a transdisciplinary approach. As a simple example, cars that communicate wirelessly with traffic lights are only of value if wireless-enabled traffic lights exist and vice versa. Cars that drive themselves are technically possible but legislation in most places doesn’t allow their use. According to innovation theory, incremental innovation tends to chase ever diminishing returns and becomes increasingly unable to tackle the “big issues.” Eventually “game changing” disruptive innovation comes along and solves the “big issues” and/or provides new opportunities. Seen through this lens, the environmental pressures of urban traffic congestion and pollution are the “big issues.” It can be argued that the design of cars and the other components of the product ecosystem follow an incremental innovation approach. That is why the “big issues” remain unresolved. This paper explores the problems of pollution and congestion in urban environments from a Product Ecosystem perspective. From this a strategy will be proposed for a transdisciplinary approach to develop and implement solutions.
Resumo:
This paper translates the concepts of sustainable production to three dimensions of economic, environmental and ecological sustainability to analyze optimal production scales by solving optimizing problems. Economic optimization seeks input-output combinations to maximize profits. Environmental optimization searches for input-output combinations that minimize the polluting effects of materials balance on the surrounding environment. Ecological optimization looks for input-output combinations that minimize the cumulative destruction of the entire ecosystem. Using an aggregate space, the framework illustrates that these optimal scales are often not identical because markets fail to account for all negative externalities. Profit-maximizing firms normally operate at the scales which are larger than optimal scales from the viewpoints of environmental and ecological sustainability; hence policy interventions are favoured. The framework offers a useful tool for efficiency studies and policy implication analysis. The paper provides an empirical investigation using a data set of rice farms in South Korea.
Resumo:
Driver training is one of the interventions aimed at mitigating the number of crashes that involve novice drivers. Our failure to understand what is really important for learners, in terms of risky driving, is one of the many drawbacks restraining us to build better training programs. Currently, there is a need to develop and evaluate Advanced Driving Assistance Systems that could comprehensively assess driving competencies. The aim of this paper is to present a novel Intelligent Driver Training System (IDTS) that analyses crash risks for a given driving situation, providing avenues for improvement and personalisation of driver training programs. The analysis takes into account numerous variables acquired synchronously from the Driver, the Vehicle and the Environment (DVE). The system then segments out the manoeuvres within a drive. This paper further presents the usage of fuzzy set theory to develop the safety inference rules for each manoeuvre executed during the drive. This paper presents a framework and its associated prototype that can be used to comprehensively view and assess complex driving manoeuvres and then provide a comprehensive analysis of the drive used to give feedback to novice drivers.
Resumo:
Interpolation techniques for spatial data have been applied frequently in various fields of geosciences. Although most conventional interpolation methods assume that it is sufficient to use first- and second-order statistics to characterize random fields, researchers have now realized that these methods cannot always provide reliable interpolation results, since geological and environmental phenomena tend to be very complex, presenting non-Gaussian distribution and/or non-linear inter-variable relationship. This paper proposes a new approach to the interpolation of spatial data, which can be applied with great flexibility. Suitable cross-variable higher-order spatial statistics are developed to measure the spatial relationship between the random variable at an unsampled location and those in its neighbourhood. Given the computed cross-variable higher-order spatial statistics, the conditional probability density function (CPDF) is approximated via polynomial expansions, which is then utilized to determine the interpolated value at the unsampled location as an expectation. In addition, the uncertainty associated with the interpolation is quantified by constructing prediction intervals of interpolated values. The proposed method is applied to a mineral deposit dataset, and the results demonstrate that it outperforms kriging methods in uncertainty quantification. The introduction of the cross-variable higher-order spatial statistics noticeably improves the quality of the interpolation since it enriches the information that can be extracted from the observed data, and this benefit is substantial when working with data that are sparse or have non-trivial dependence structures.
Resumo:
Recently, attempts to improve decision making in species management have focussed on uncertainties associated with modelling temporal fluctuations in populations. Reducing model uncertainty is challenging; while larger samples improve estimation of species trajectories and reduce statistical errors, they typically amplify variability in observed trajectories. In particular, traditional modelling approaches aimed at estimating population trajectories usually do not account well for nonlinearities and uncertainties associated with multi-scale observations characteristic of large spatio-temporal surveys. We present a Bayesian semi-parametric hierarchical model for simultaneously quantifying uncertainties associated with model structure and parameters, and scale-specific variability over time. We estimate uncertainty across a four-tiered spatial hierarchy of coral cover from the Great Barrier Reef. Coral variability is well described; however, our results show that, in the absence of additional model specifications, conclusions regarding coral trajectories become highly uncertain when considering multiple reefs, suggesting that management should focus more at the scale of individual reefs. The approach presented facilitates the description and estimation of population trajectories and associated uncertainties when variability cannot be attributed to specific causes and origins. We argue that our model can unlock value contained in large-scale datasets, provide guidance for understanding sources of uncertainty, and support better informed decision making
Resumo:
This study explores how preservice teachers with non-Australian educational backgrounds and prerequisite qualifications make their way into and through a local teacher education program. It is informed by Margaret Archer's sociology of reflexivity to understand the interplay between these people's personal resources and institutional constraints and enablements. Data were collected from seven participants through narrative interviews. A narrative analysis identified big and small stories. Findings show that these preservice teachers purposefully exercise their agency as they invest in a common project for a variety of transnational goals. The outcome of that project emerges from the interaction between structure and agency.
Resumo:
Critical stage in open-pit mining is to determine the optimal extraction sequence of blocks, which has significant impacts on mining profitability. In this paper, a more comprehensive block sequencing optimisation model is developed for the open-pit mines. In the model, material characteristics of blocks, grade control, excavator and block sequencing are investigated and integrated to maximise the short-term benefit of mining. Several case studies are modeled and solved by CPLEX MIP and CP engines. Numerical investigations are presented to illustrate and validate the proposed methodology.