690 resultados para Biomechanical Modelling
Resumo:
Adolescent idiopathic scoliosis (AIS) is a three-dimensional spinal deformity involving the side-to-side curvature of the spine in the coronal plane and axial rotation of the vertebrae in the transverse plane. For patients with a severe or rapidly progressing deformity, corrective instrumented fusion surgery is performed. The wide choice of implants and large variability between patients make it difficult for surgeons to choose optimal treatment strategies. This paper describes the patient specific finite element modelling techniques employed and the results of preliminary analyses predicting the surgical outcomes for a series of AIS patients. This report highlights the importance of not only patient-specific anatomy and material parameters, but also patient-specific data for the clinical and physiological loading conditions experienced by the patient who has corrective scoliosis surgery.
Resumo:
A critical step in the dissemination of ovarian cancer is the formation of multicellular spheroids from cells shed from the primary tumour. The objectives of this study were to apply bioengineered three-dimensional (3D) microenvironments for culturing ovarian cancer spheroids in vitro and simultaneously to build on a mathematical model describing the growth of multicellular spheroids in these biomimetic matrices. Cancer cells derived from human epithelial ovarian carcinoma were embedded within biomimetic hydrogels of varying stiffness and grown for up to 4 weeks. Immunohistochemistry, imaging and growth analyses were used to quantify the dependence of cell proliferation and apoptosis on matrix stiffness, long-term culture and treatment with the anti-cancer drug paclitaxel. The mathematical model was formulated as a free boundary problem in which each spheroid was treated as an incompressible porous medium. The functional forms used to describe the rates of cell proliferation and apoptosis were motivated by the experimental work and predictions of the mathematical model compared with the experimental output. This work aimed to establish whether it is possible to simulate solid tumour growth on the basis of data on spheroid size, cell proliferation and cell death within these spheroids. The mathematical model predictions were in agreement with the experimental data set and simulated how the growth of cancer spheroids was influenced by mechanical and biochemical stimuli including matrix stiffness, culture duration and administration of a chemotherapeutic drug. Our computational model provides new perspectives on experimental results and has informed the design of new 3D studies of chemoresistance of multicellular cancer spheroids.
Resumo:
Reliable pollutant build-up prediction plays a critical role in the accuracy of urban stormwater quality modelling outcomes. However, water quality data collection is resource demanding compared to streamflow data monitoring, where a greater quantity of data is generally available. Consequently, available water quality data sets span only relatively short time scales unlike water quantity data. Therefore, the ability to take due consideration of the variability associated with pollutant processes and natural phenomena is constrained. This in turn gives rise to uncertainty in the modelling outcomes as research has shown that pollutant loadings on catchment surfaces and rainfall within an area can vary considerably over space and time scales. Therefore, the assessment of model uncertainty is an essential element of informed decision making in urban stormwater management. This paper presents the application of a range of regression approaches such as ordinary least squares regression, weighted least squares Regression and Bayesian Weighted Least Squares Regression for the estimation of uncertainty associated with pollutant build-up prediction using limited data sets. The study outcomes confirmed that the use of ordinary least squares regression with fixed model inputs and limited observational data may not provide realistic estimates. The stochastic nature of the dependent and independent variables need to be taken into consideration in pollutant build-up prediction. It was found that the use of the Bayesian approach along with the Monte Carlo simulation technique provides a powerful tool, which attempts to make the best use of the available knowledge in the prediction and thereby presents a practical solution to counteract the limitations which are otherwise imposed on water quality modelling.
Resumo:
Fire safety has become an important part in structural design due to the ever increasing loss of properties and lives during fires. Fire rating of load bearing wall systems made of Light gauge Steel Frames (LSF) is determined using fire tests based on the standard time-temperature curve given in ISO 834. However, modern residential buildings make use of thermoplastic materials, which mean considerably high fuel loads. Hence a detailed fire research study into the performance of load bearing LSF walls was undertaken using a series of realistic design fire curves developed based on Eurocode parametric curves and Barnett’s BFD curves. It included both full scale fire tests and numerical studies of LSF walls without any insulation, and the recently developed externally insulated composite panels. This paper presents the details of fire tests first, and then the numerical models of tested LSF wall studs. It shows that suitable finite element models can be developed to predict the fire rating of load bearing walls under real fire conditions. The paper also describes the structural and fire performances of externally insulated LSF walls in comparison to the non-insulated walls under real fires, and highlights the effects of standard and real fire curves on fire performance of LSF walls.
Resumo:
In this work we discuss the effects of white and coloured noise perturbations on the parameters of a mathematical model of bacteriophage infection introduced by Beretta and Kuang in [Math. Biosc. 149 (1998) 57]. We numerically simulate the strong solutions of the resulting systems of stochastic ordinary differential equations (SDEs), with respect to the global error, by means of numerical methods of both Euler-Taylor expansion and stochastic Runge-Kutta type.
Resumo:
Shoulder joint is a complex integration of soft and hard tissues. It plays an important role in performing daily activities and can be considered as a perfect compromise between mobility and stability. However, shoulder is vulnerable to complications such as dislocations and osteoarthritis. Finite element (FE) models have been developed to understand shoulder injury mechanisms, implications of disease on shoulder complex and in assessing the quality of shoulder implants. Further, although few, Finite element shoulder models have also been utilized to answer important clinical questions such as the difference between a normal and osteoarthritic shoulder joint. However, due to the absence of experimental validation, it is questionable whether the constitutive models applied in these FE models are adequate to represent mechanical behaviors of shoulder elements (Cartilages, Ligaments, Muscles etc), therefore the confidence of using current models in answering clinically relevant question. The main objective of this review is to critically evaluate the existing FE shoulder models that have been used to investigate clinical problems. Due concern is given to check the adequacy of representative constitutive models of shoulder elements in drawing clinically relevant conclusion. Suggestions have been given to improve the existing shoulder models by inclusion of adequate constitutive models for shoulder elements to confidently answer clinically relevant questions.
Resumo:
Articular cartilage is a complex structure with an architecture in which fluid-swollen proteoglycans constrained within a 3D network of collagen fibrils. Because of the complexity of the cartilage structure, the relationship between its mechanical behaviours at the macroscale level and its components at the micro-scale level are not completely understood. The research objective in this thesis is to create a new model of articular cartilage that can be used to simulate and obtain insight into the micro-macro-interaction and mechanisms underlying its mechanical responses during physiological function. The new model of articular cartilage has two characteristics, namely: i) not use fibre-reinforced composite material idealization ii) Provide a framework for that it does probing the micro mechanism of the fluid-solid interaction underlying the deformation of articular cartilage using simple rules of repartition instead of constitutive / physical laws and intuitive curve-fitting. Even though there are various microstructural and mechanical behaviours that can be studied, the scope of this thesis is limited to osmotic pressure formation and distribution and their influence on cartilage fluid diffusion and percolation, which in turn governs the deformation of the compression-loaded tissue. The study can be divided into two stages. In the first stage, the distributions and concentrations of proteoglycans, collagen and water were investigated using histological protocols. Based on this, the structure of cartilage was conceptualised as microscopic osmotic units that consist of these constituents that were distributed according to histological results. These units were repeated three-dimensionally to form the structural model of articular cartilage. In the second stage, cellular automata were incorporated into the resulting matrix (lattice) to simulate the osmotic pressure of the fluid and the movement of water within and out of the matrix; following the osmotic pressure gradient in accordance with the chosen rule of repartition of the pressure. The outcome of this study is the new model of articular cartilage that can be used to simulate and study the micromechanical behaviours of cartilage under different conditions of health and loading. These behaviours are illuminated at the microscale level using the socalled neighbourhood rules developed in the thesis in accordance with the typical requirements of cellular automata modelling. Using these rules and relevant Boundary Conditions to simulate pressure distribution and related fluid motion produced significant results that provided the following insight into the relationships between osmotic pressure gradient and associated fluid micromovement, and the deformation of the matrix. For example, it could be concluded that: 1. It is possible to model articular cartilage with the agent-based model of cellular automata and the Margolus neighbourhood rule. 2. The concept of 3D inter connected osmotic units is a viable structural model for the extracellular matrix of articular cartilage. 3. Different rules of osmotic pressure advection lead to different patterns of deformation in the cartilage matrix, enabling an insight into how this micromechanism influences macromechanical deformation. 4. When features such as transition coefficient were changed, permeability (representing change) is altered due to the change in concentrations of collagen, proteoglycans (i.e. degenerative conditions), the deformation process is impacted. 5. The boundary conditions also influence the relationship between osmotic pressure gradient and fluid movement at the micro-scale level. The outcomes are important to cartilage research since we can use these to study the microscale damage in the cartilage matrix. From this, we are able to monitor related diseases and their progression leading to potential insight into drug-cartilage interaction for treatment. This innovative model is an incremental progress on attempts at creating further computational modelling approaches to cartilage research and other fluid-saturated tissues and material systems.
Resumo:
The aim of this study was to perform a biomechanical analysis of the cement-in-cement (c-in-c) technique for fixation of selected Vancouver Type B1 femoral periprosthetic fractures and to assess the degree of cement interposition at the fracture site. Six embalmed cadaveric femora were implanted with a cemented femoral stem. Vancouver Type B1 fractures were created by applying a combined axial and rotational load to failure. The femora were repaired using the c-in-c technique and reloaded to failure. The mean primary fracture torque was 117 Nm (SD 16.6, range 89–133). The mean revision fracture torque was 50 Nm (SD 16.6, range 29–74), which is above the torque previously observed for activities of daily living. Cement interposition at the fracture site was found to be minimal.
Resumo:
This work has led to the development of empirical mathematical models to quantitatively predicate the changes of morphology in osteocyte-like cell lines (MLO-Y4) in culture. MLO-Y4 cells were cultured at low density and the changes in morphology recorded over 11 hours. Cell area and three dimensional shape features including aspect ratio, circularity and solidity were then determined using widely accepted image analysis software (ImageJTM). Based on the data obtained from the imaging analysis, mathematical models were developed using the non-linear regression method. The developed mathematical models accurately predict the morphology of MLO-Y4 cells for different culture times and can, therefore, be used as a reference model for analyzing MLO-Y4 cell morphology changes within various biological/mechanical studies, as necessary.
Resumo:
The actin microfilament plays a critical role in many cellular processes including embryonic development, wound healing, immune response, and tissue development. It is commonly organized in the form of networks whose mechanical properties change with changes in their architecture due to cell evolution processes. This paper presents a new nonlinear continuum mechanics model of single filamentous actin (F-actin) that is based on nanoscale molecular simulations. Following this continuum model of the single F-actin, mechanical properties of differently architected lamellipodia are studied. The results provide insight that can contribute to the understanding of the cell edge motions of living cells.
Resumo:
This paper presents a formal methodology for attack modeling and detection for networks. Our approach has three phases. First, we extend the basic attack tree approach 1 to capture (i) the temporal dependencies between components, and (ii) the expiration of an attack. Second, using the enhanced attack trees (EAT) we build a tree automaton that accepts a sequence of actions from input stream if there is a traverse of an attack tree from leaves to the root node. Finally, we show how to construct an enhanced parallel automaton (EPA) that has each tree automaton as a subroutine and can process the input stream by considering multiple trees simultaneously. As a case study, we show how to represent the attacks in IEEE 802.11 and construct an EPA for it.
Resumo:
A juice flow model has been developed to estimate the juice expression at the four nips of a sixroller mill. An extended volumetric theory was applied to determine the juice expressed at each nip. The model was applied to a first and final mill, using typical mill settings and an empirical equation to estimate reabsorption. Results of using the model for typical heavy-duty pressure feeder settings show that most of the juice is expressed at the pressure feeder nip. Since the pressure feeders are remote from the mill, a significant portion of the juice is expressed before the bagasse enters the mill.
Resumo:
Graphene, one of the allotropes (diamond, carbon nanotube, and fullerene) of element carbon, is a monolayer of honeycomb lattice of carbon atoms, which was discovered in 2004. The Nobel Prize in Physics 2010 was awarded to Andre Geim and Konstantin Novoselov for their ground breaking work on the two-dimensional (2D) graphene [1]. Since its discovery, the research communities have shown a lot of interest in this novel material owing to its intriguing electrical, mechanical and thermal properties. It has been confirmed that grapheme possesses very peculiar electrical properties such as anomalous quantum hall effect, and high electron mobility at room temperature (250000 cm2/Vs). Graphene also has exceptional mechanical properties. It is one of the stiffest (modulus ~1 TPa) and strongest (strength ~100 GPa) materials. In addition, it has exceptional thermal conductivity (5000 Wm-1K-1). Due to these exceptional properties, graphene has demonstrated its potential for broad applications in micro and nano devices, various sensors, electrodes, solar cells and energy storage devices and nanocomposites. In particular, the excellent mechanical properties of graphene make it more attractive for development next generation nanocomposites and hybrid materials...
Resumo:
Standard differential equation–based models of collective cell behaviour, such as the logistic growth model, invoke a mean–field assumption which is equivalent to assuming that individuals within the population interact with each other in proportion to the average population density. Implementing such assumptions implies that the dynamics of the system are unaffected by spatial structure, such as the formation of patches or clusters within the population. Recent theoretical developments have introduced a class of models, known as moment dynamics models, which aim to account for the dynamics of individuals, pairs of individuals, triplets of individuals and so on. Such models enable us to describe the dynamics of populations with clustering, however, little progress has been made with regard to applying moment dynamics models to experimental data. Here, we report new experimental results describing the formation of a monolayer of cells using two different cell types: 3T3 fibroblast cells and MDA MB 231 breast cancer cells. Our analysis indicates that the 3T3 fibroblast cells are relatively motile and we observe that the 3T3 fibroblast monolayer forms without clustering. Alternatively, the MDA MB 231 cells are less motile and we observe that the MDA MB 231 monolayer formation is associated with significant clustering. We calibrate a moment dynamics model and a standard mean–field model to both data sets. Our results indicate that the mean–field and moment dynamics models provide similar descriptions of the 3T3 fibroblast monolayer formation whereas these two models give very different predictions for the MDA MD 231 monolayer formation. These outcomes indicate that standard mean–field models of collective cell behaviour are not always appropriate and that care ought to be exercised when implementing such a model.