396 resultados para temperature programming optimization
Resumo:
This thesis articulates and examines public engagement programming in an emerging, non¬-traditional site. As a practice-led research project, the creative work proposes a site responsive, engagement centric, agile model for curatorial programming that developed out of the dynamic, new media/digital, curatorial practice at QUT's Creative Industries Precinct. The model and its accompanying exegetical framework, Curating in Uncharted Territories, offer a theoretically informed approach to programming, delivering and reporting for curatorial practices in a non¬-traditional sites of public engagement. The research provides the foundation for full development of the model and the basis for further research.
Resumo:
We investigate, using scanning tunnelling microscopy, the adsorption of pentacene on Ni(111) at room temperature and the behaviour of these monolayer films with annealing up to 700 °C. We observe the conversion of pentacene into graphene, which begins from as low as 220 °C with the coalescence of pentacene molecules into large planar aggregates. Then, by annealing at 350 °C for 20 minutes, these aggregates expand into irregular domains of graphene tens of nanometers in size. On surfaces where graphene and nickel carbide coexist, pentacene shows preferential adsorption on the nickel carbide phase. The same pentacene to graphene transformation was also achieved on Cu(111), but at a higher activation temperature, producing large graphene domains that exhibit a range of moiré superlattice periodicities.
Resumo:
This study proposes an optimized approach of designing in which a model specially shaped composite tank for spacecrafts is built by applying finite element analysis. The composite layers are preliminarily designed by combining quasi-network design method with numerical simulation, which determines the ratio between the angle and the thickness of layers as the initial value of the optimized design. By adopting an adaptive simulated annealing algorithm, the angles and the numbers of layers at each angle are optimized to minimize the weight of structure. Based on this, the stacking sequence of composite layers is formulated according to the number of layers in the optimized structure by applying the enumeration method and combining the general design parameters. Numerical simulation is finally adopted to calculate the buckling limit of tanks in different designing methods. This study takes a composite tank with a cone-shaped cylinder body as example, in which ellipsoid head section and outer wall plate are selected as the object to validate this method. The result shows that the quasi-network design method can improve the design quality of composite material layer in tanks with complex preliminarily loading conditions. The adaptive simulated annealing algorithm can reduce the initial design weight by 30%, which effectively probes the global optimal solution and optimizes the weight of structure. It can be therefore proved that, this optimization method is capable of designing and optimizing specially shaped composite tanks with complex loading conditions.
Resumo:
Particle Swarm Optimization (PSO) is a biologically inspired computational search and optimization method based on the social behaviors of birds flocking or fish schooling. Although, PSO is represented in solving many well-known numerical test problems, but it suffers from the premature convergence. A number of basic variations have been developed due to solve the premature convergence problem and improve quality of solution founded by the PSO. This study presents a comprehensive survey of the various PSO-based algorithms. As part of this survey, the authors have included a classification of the approaches and they have identify the main features of each proposal. In the last part of the study, some of the topics within this field that are considered as promising areas of future research are listed.
Resumo:
The 12.7-10.5 Ma Cougar Point Tuff in southern Idaho, USA, consists of 10 large-volume (>10²-10³ km³ each), high-temperature (800-1000 °C), rhyolitic ash-flow tuffs erupted from the Bruneau-Jarbidge volcanic center of the Yellowstone hotspot. These tuffs provide evidence for compositional and thermal zonation in pre-eruptive rhyolite magma, and suggest the presence of a long-lived reservoir that was tapped by numerous large explosive eruptions. Pyroxene compositions exhibit discrete compositional modes with respect to Fe and Mg that define a linear spectrum punctuated by conspicuous gaps. Airfall glass compositions also cluster into modes, and the presence of multiple modes indicates tapping of different magma volumes during early phases of eruption. Equilibrium assemblages of pigeonite and augite are used to reconstruct compositional and thermal gradients in the pre-eruptive reservoir. The recurrence of identical compositional modes and of mineral pairs equilibrated at high temperatures in successive eruptive units is consistent with the persistence of their respective liquids in the magma reservoir. Recurrence intervals of identical modes range from 0.3 to 0.9 Myr and suggest possible magma residence times of similar duration. Eruption ages, magma temperatures, Nd isotopes, and pyroxene and glass compositions are consistent with a long-lived, dynamically evolving magma reservoir that was chemically and thermally zoned and composed of multiple discrete magma volumes.
Resumo:
The phase relations have been investigated experimentally at 200 and 500 MPa as a function of water activity for one of the least evolved (Indian Batt Rhyolite) and of a more evolved rhyolite composition (Cougar Point Tuff XV) from the 12·8-8·1 Ma Bruneau-Jarbidge eruptive center of the Yellowstone hotspot. Particular priority was given to accurate determination of the water content of the quenched glasses using infrared spectroscopic techniques. Comparison of the composition of natural and experimentally synthesized phases confirms that high temperatures (>900°C) and extremely low melt water contents (<1·5 wt % H₂O) are required to reproduce the natural mineral assemblages. In melts containing 0·5-1·5 wt % H₂O, the liquidus phase is clinopyroxene (excluding Fe-Ti oxides, which are strongly dependent on fO₂), and the liquidus temperature of the more evolved Cougar Point Tuff sample (BJR; 940-1000°C) is at least 30°C lower than that of the Indian Batt Rhyolite lava sample (IBR2; 970-1030°C). For the composition BJR, the comparison of the compositions of the natural and experimental glasses indicates a pre-eruptive temperature of at least 900°C. The composition of clinopyroxene and pigeonite pairs can be reproduced only for water contents below 1·5 wt % H₂O at 900°C, or lower water contents if the temperature is higher. For the composition IBR2, a minimum temperature of 920°C is necessary to reproduce the main phases at 200 and 500 MPa. At 200 MPa, the pre-eruptive water content of the melt is constrained in the range 0·7-1·3 wt % at 950°C and 0·3-1·0 wt % at 1000°C. At 500 MPa, the pre-eruptive temperatures are slightly higher (by 30-50°C) for the same ranges of water concentration. The experimental results are used to explore possible proxies to constrain the depth of magma storage. The crystallization sequence of tectosilicates is strongly dependent on pressure between 200 and 500 MPa. In addition, the normative Qtz-Ab-Or contents of glasses quenched from melts coexisting with quartz, sanidine and plagioclase depend on pressure and melt water content, assuming that the normative Qtz and Ab/Or content of such melts is mainly dependent on pressure and water activity, respectively. The combination of results from the phase equilibria and from the composition of glasses indicates that the depth of magma storage for the IBR2 and BJR compositions may be in the range 300-400 MPa (13 km) and 200-300 MPa (10 km), respectively.
Resumo:
Index tracking is an investment approach where the primary objective is to keep portfolio return as close as possible to a target index without purchasing all index components. The main purpose is to minimize the tracking error between the returns of the selected portfolio and a benchmark. In this paper, quadratic as well as linear models are presented for minimizing the tracking error. The uncertainty is considered in the input data using a tractable robust framework that controls the level of conservatism while maintaining linearity. The linearity of the proposed robust optimization models allows a simple implementation of an ordinary optimization software package to find the optimal robust solution. The proposed model of this paper employs Morgan Stanley Capital International Index as the target index and the results are reported for six national indices including Japan, the USA, the UK, Germany, Switzerland and France. The performance of the proposed models is evaluated using several financial criteria e.g. information ratio, market ratio, Sharpe ratio and Treynor ratio. The preliminary results demonstrate that the proposed model lowers the amount of tracking error while raising values of portfolio performance measures.
Resumo:
Skin temperature is an important physiological measure that can reflect the presence of illness and injury as well as provide insight into the localised interactions between the body and the environment. The aim of this systematic review was to analyse the agreement between conductive and infrared means of assessing skin temperature which are commonly employed in in clinical, occupational, sports medicine, public health and research settings. Full-text eligibility was determined independently by two reviewers. Studies meeting the following criteria were included in the review: 1) the literature was written in English, 2) participants were human (in vivo), 3) skin surface temperature was assessed at the same site, 4) with at least two commercially available devices employed—one conductive and one infrared—and 5) had skin temperature data reported in the study. A computerised search of four electronic databases, using a combination of 21 keywords, and citation tracking was performed in January 2015. A total of 8,602 were returned. Methodology quality was assessed by 2 authors independently, using the Cochrane risk of bias tool. A total of 16 articles (n = 245) met the inclusion criteria. Devices are classified to be in agreement if they met the clinically meaningful recommendations of mean differences within ±0.5 °C and limits of agreement of ±1.0 °C. Twelve of the included studies found mean differences greater than ±0.5 °C between conductive and infrared devices. In the presence of external stimulus (e.g. exercise and/or heat) five studies foundexacerbated measurement differences between conductive and infrared devices. This is the first review that has attempted to investigate presence of any systemic bias between infrared and conductive measures by collectively evaluating the current evidence base. There was also a consistently high risk of bias across the studies, in terms of sample size, random sequence generation, allocation concealment, blinding and incomplete outcome data. This systematic review questions the suitability of using infrared cameras in stable, resting, laboratory conditions. Furthermore, both infrared cameras and thermometers in the presence of sweat and environmental heat demonstrate poor agreement when compared to conductive devices. These findings have implications for clinical, occupational, public health, sports science and research fields.
Resumo:
In this study we present a combinatorial optimization method based on particle swarm optimization and local search algorithm on the multi-robot search system. Under this method, in order to create a balance between exploration and exploitation and guarantee the global convergence, at each iteration step if the distance between target and the robot become less than specific measure then a local search algorithm is performed. The local search encourages the particle to explore the local region beyond to reach the target in lesser search time. Experimental results obtained in a simulated environment show that biological and sociological inspiration could be useful to meet the challenges of robotic applications that can be described as optimization problems.
Resumo:
This project is a step towards assessing the effects of climate change on the tra catfish industry in Vietnam. The methods were designed to evaluate possible effects of salinity and temperature increase and their interaction on fish physiological parameters, growth performance, survival and the expression of stress related genes. Results indicated that tra had higher overall performance at 35oC with 6ppt salinity and therefore should cope with moderate predicted outcomes of climate change for the region. The experiments were mostly conducted in the Mekong Delta, Vietnam - the centre of the tra catfish industry with the cooperation of Can Tho University – Can Tho City – Vietnam.
Resumo:
Optical transmittance and conductivity for thin metallic films, such as Au, are two inversely related and extremely important parameters for its application in organic photovoltaics as the front electrode. We report our findings on how these parameters have been optimized to attain maximum possible efficiencies by fabricating organic solar cells with thin Au film anodes of differing optical transmittances and consequently due to scaling at the nanolevel, varying electrical conductivities. There was an extraordinary improvement in the overall solar cell efficiency (to the order of 49%) when the Au thin film transmittance was increased from 38% to 54%. Surface morphologies of these thin films also have an effect on the critical parameters including, Voc, Jsc and FF.
Resumo:
Target-tilted room temperature sputtering of aluminium doped zinc oxide (AZO) provides transparent conducting electrodes with sheet resistances of <10 Ω □-1 and average transmittance in the visible region of up to 84%. The properties of the AZO electrode are found to be strongly dependent on the target-tilting angle and film thickness. The AZO electrodes showed comparable performance to commercial indium tin oxide (ITO) electrodes in organic photovoltaic (OPV) devices. OPV devices containing a bulk heterojunction active layer comprised of poly(3-n-hexylthiophene) (P3HT):phenyl-C61-butyric acid methyl ester (PCBM) and an AZO transparent conducting electrode had a power conversion efficiency (PCE) of up to 2.5% with those containing ITO giving a PCE of 2.6%. These results demonstrate that AZO films are a good alternative to ITO for transparent conducting electrodes.
Resumo:
Sensors to detect toxic and harmful gases are usually based on metal oxides that are operated at elevated temperature. However, enabling gas detection at room temperature (RT) is a significant ongoing challenge. Here, we address this issue by demonstrating that microrods of semiconducting CuTCNQ (TCNQ=7,7,8,8-tetracyanoquinodimethane) with nanostructured features can be employed as conductometric gas sensors operating at 50°C for detection of oxidizing and reducing gases such as NO2 and NH3. The sensor is evaluated at RT and up to 200°C. It was found that CuTCNQ is transformed into a N-doped CuO material with p-type conductivity when annealed at the maximum temperature. This is the first time that such a transformation, from a semiconducting charge transfer material into a N-doped metal oxide is detected. It is shown here that both the surface chemistry and the type of majority charge carrier within the sensing layer is critically important for the type of response towards oxidizing and reducing gases. A detailed physical description of NO2 and NH3 sensing mechanism at CuTCNQ and N-doped CuO is provided to explain the difference in the response. For the N-doped CuO sensor, a detection limit of 1 ppm for NO2 and 10 ppm for NH3 are achieved.
Resumo:
Nowadays Solar Cooling systems are becoming popular to reduce the carbon footprint of air conditioning. The use of an absorption chiller connected to solar thermal panels is increasing, but little study has been carried out to assess the advantage of join together an absorption chiller and a desiccant wheel to remove the sensible heat and the latent heat in different ways than the current design adopted in the industry. In this work I assess the possibility of implement a desiccant wheel in a conventional solar cooling system and the possibility of recovering the heat rejected by the absorption chiller which is then used for the regeneration of the desiccant wheel. The implementation of a desiccant wheel and the recovery of the heat rejected could provide a significant energy saving when compared to traditional solar cooling system. The results assist in the practical development of a solar cooling system which simultaneously uses absorption and adsorption technology.
Resumo:
The objective of this study is to examine the association between ambient temperature and children’s lung function in Baotou, China. We recruited 315 children (8–12 years) from Baotou, China in the spring of 2004, 2005, and 2006. They performed three successive forced expiratory measurements three times daily (morning, noon, and evening) for about 5 weeks. The highest peak expiratory flow (PEF) was recorded for each session. Daily data on ambient temperature, relative humidity, and air pollution were monitored during the same period. Mixed models with a distributed lag structure were used to examine the effects of temperature on lung function while adjusting for individual characteristics and environmental factors. Low temperatures were significantly associated with decreases in PEF. The effects lasted for lag 0–2 days. For all participants, the cumulative effect estimates (lag 0–2 days) were −1.44 (−1.93, −0.94) L/min, −1.39 (−1.92, −0.86) L/min, −1.40 (−1.97, −0.82) L/min, and −1.28 (−1.69, −0.88) L/min for morning, noon, evening, and daily mean PEF, respectively, associated with 1 °C decrease in daily mean temperature. Generally, the effects of temperature were slightly stronger in boys than in girls for noon, evening, and daily mean PEF, while the effects were stronger in girls for morning PEF. PM2.5 had joint effects with temperature on children’s PEF. Higher PM2.5 increased the impacts of low temperature. Low ambient temperatures are associated with lower lung function in children in Baotou, China. Preventive health policies will be required for protecting children from the cold weather.