604 resultados para Vertex Models
Resumo:
Process-aware information systems (PAISs) can be configured using a reference process model, which is typically obtained via expert interviews. Over time, however, contextual factors and system requirements may cause the operational process to start deviating from this reference model. While a reference model should ideally be updated to remain aligned with such changes, this is a costly and often neglected activity. We present a new process mining technique that automatically improves the reference model on the basis of the observed behavior as recorded in the event logs of a PAIS. We discuss how to balance the four basic quality dimensions for process mining (fitness, precision, simplicity and generalization) and a new dimension, namely the structural similarity between the reference model and the discovered model. We demonstrate the applicability of this technique using a real-life scenario from a Dutch municipality.
Resumo:
This presentation discusses topics and issues that connect closely with the Conference Themes and themes in the ARACY Report Card. For example, developing models of public space that are safe, welcoming and relevant to children and young people will impact on their overall wellbeing and may help to prevent many of the tensions occurring in Australia and elsewhere around the world. This area is the subject of ongoing international debate, research and policy formation, relevant to concerns in the ARACY Report Card about children and young people’s health and safety, participation, behaviours and risks and peer and family relationships.
Resumo:
Background: Developing sampling strategies to target biological pests such as insects in stored grain is inherently difficult owing to species biology and behavioural characteristics. The design of robust sampling programmes should be based on an underlying statistical distribution that is sufficiently flexible to capture variations in the spatial distribution of the target species. Results: Comparisons are made of the accuracy of four probability-of-detection sampling models - the negative binomial model,1 the Poisson model,1 the double logarithmic model2 and the compound model3 - for detection of insects over a broad range of insect densities. Although the double log and negative binomial models performed well under specific conditions, it is shown that, of the four models examined, the compound model performed the best over a broad range of insect spatial distributions and densities. In particular, this model predicted well the number of samples required when insect density was high and clumped within experimental storages. Conclusions: This paper reinforces the need for effective sampling programs designed to detect insects over a broad range of spatial distributions. The compound model is robust over a broad range of insect densities and leads to substantial improvement in detection probabilities within highly variable systems such as grain storage.
Resumo:
Mathematical models of mosquito-borne pathogen transmission originated in the early twentieth century to provide insights into how to most effectively combat malaria. The foundations of the Ross–Macdonald theory were established by 1970. Since then, there has been a growing interest in reducing the public health burden of mosquito-borne pathogens and an expanding use of models to guide their control. To assess how theory has changed to confront evolving public health challenges, we compiled a bibliography of 325 publications from 1970 through 2010 that included at least one mathematical model of mosquito-borne pathogen transmission and then used a 79-part questionnaire to classify each of 388 associated models according to its biological assumptions. As a composite measure to interpret the multidimensional results of our survey, we assigned a numerical value to each model that measured its similarity to 15 core assumptions of the Ross–Macdonald model. Although the analysis illustrated a growing acknowledgement of geographical, ecological and epidemiological complexities in modelling transmission, most models during the past 40 years closely resemble the Ross–Macdonald model. Modern theory would benefit from an expansion around the concepts of heterogeneous mosquito biting, poorly mixed mosquito-host encounters, spatial heterogeneity and temporal variation in the transmission process.
Resumo:
Business models to date have remained the creation of management, however, it is the belief of the authors that designers should be critically approaching, challenging and creating new business models as part of their practice. This belief portrays a new era where business model constructs become the new design brief of the future and fuel design and innovation to work together at the strategic level of an organisation. Innovation can no longer rely on technology and R&D alone but must incorporate business models. Business model innovation has become a strong type of competitive advantage. As firms choose not to compete only on price, but through the delivery of a unique value proposition in order to engage with customers and to differentiate a company within a competitive market. The purpose of this paper is to explore and investigate business model design through various product and/or service deliveries, and identify common drivers that are catalysts for business model innovation. Fifty companies spanning a diverse range of criteria were chosen, to evaluate and compare commonalities and differences in the design of their business models. The analysis of these business cases uncovered commonalities of the key strategic drivers behind these innovative business models. Five Meta Models were derived from this content analysis: Customer Led, Cost Driven, Resource Led, Partnership Led and Price Led. These five key foci provide a designer with a focus from which quick prototypes of new business models are created. Implications from this research suggest there is no ‘one right’ model, but rather through experimentation, the generation of many unique and diverse concepts can result in greater possibilities for future innovation and sustained competitive advantage.
Resumo:
This dissertation seeks to define and classify potential forms of Nonlinear structure and explore the possibilities they afford for the creation of new musical works. It provides the first comprehensive framework for the discussion of Nonlinear structure in musical works and provides a detailed overview of the rise of nonlinearity in music during the 20th century. Nonlinear events are shown to emerge through significant parametrical discontinuity at the boundaries between regions of relatively strong internal cohesion. The dissertation situates Nonlinear structures in relation to linear structures and unstructured sonic phenomena and provides a means of evaluating Nonlinearity in a musical structure through the consideration of the degree to which the structure is integrated, contingent, compressible and determinate as a whole. It is proposed that Nonlinearity can be classified as a three dimensional space described by three continuums: the temporal continuum, encompassing sequential and multilinear forms of organization, the narrative continuum encompassing processual, game structure and developmental narrative forms and the referential continuum encompassing stylistic allusion, adaptation and quotation. The use of spectrograms of recorded musical works is proposed as a means of evaluating Nonlinearity in a musical work through the visual representation of parametrical divergence in pitch, duration, timbre and dynamic over time. Spectral and structural analysis of repertoire works is undertaken as part of an exploration of musical nonlinearity and the compositional and performative features that characterize it. The contribution of cultural, ideological, scientific and technological shifts to the emergence of Nonlinearity in music is discussed and a range of compositional factors that contributed to the emergence of musical Nonlinearity is examined. The evolution of notational innovations from the mobile score to the screen score is plotted and a novel framework for the discussion of these forms of musical transmission is proposed. A computer coordinated performative model is discussed, in which a computer synchronises screening of notational information, provides temporal coordination of the performers through click-tracks or similar methods and synchronises the audio processing and synthesized elements of the work. It is proposed that such a model constitutes a highly effective means of realizing complex Nonlinear structures. A creative folio comprising 29 original works that explore nonlinearity is presented, discussed and categorised utilising the proposed classifications. Spectrograms of these works are employed where appropriate to illustrate the instantiation of parametrically divergent substructures and examples of structural openness through multiple versioning.
Resumo:
Parallel interleaved converters are finding more applications everyday, for example they are frequently used for VRMs on PC main boards mainly to obtain better transient response. Parallel interleaved converters can have their inductances uncoupled, directly coupled or inversely coupled, all of which have different applications with associated advantages and disadvantages. Coupled systems offer more control over converter features, such as ripple currents, inductance volume and transient response. To be able to gain an intuitive understanding of which type of parallel interleaved converter, what amount of coupling, what number of levels and how much inductance should be used for different applications a simple equivalent model is needed. As all phases of an interleaved converter are supposed to be identical, the equivalent model is nothing more than a separate inductance which is common to all phases. Without utilising this simplification the design of a coupled system is quite daunting. Being able to design a coupled system involves solving and understanding the RMS currents of the input, individual phase (or cell) and output. A procedure using this equivalent model and a small amount of modulo arithmetic is detailed.
Resumo:
This thesis concerns the mathematical model of moving fluid interfaces in a Hele-Shaw cell: an experimental device in which fluid flow is studied by sandwiching the fluid between two closely separated plates. Analytic and numerical methods are developed to gain new insights into interfacial stability and bubble evolution, and the influence of different boundary effects is examined. In particular, the properties of the velocity-dependent kinetic undercooling boundary condition are analysed, with regard to the selection of only discrete possible shapes of travelling fingers of fluid, the formation of corners on the interface, and the interaction of kinetic undercooling with the better known effect of surface tension. Explicit solutions to the problem of an expanding or contracting ring of fluid are also developed.
Resumo:
This paper evaluates the efficiency of a number of popular corpus-based distributional models in performing discovery on very large document sets, including online collections. Literature-based discovery is the process of identifying previously unknown connections from text, often published literature, that could lead to the development of new techniques or technologies. Literature-based discovery has attracted growing research interest ever since Swanson's serendipitous discovery of the therapeutic effects of fish oil on Raynaud's disease in 1986. The successful application of distributional models in automating the identification of indirect associations underpinning literature-based discovery has been heavily demonstrated in the medical domain. However, we wish to investigate the computational complexity of distributional models for literature-based discovery on much larger document collections, as they may provide computationally tractable solutions to tasks including, predicting future disruptive innovations. In this paper we perform a computational complexity analysis on four successful corpus-based distributional models to evaluate their fit for such tasks. Our results indicate that corpus-based distributional models that store their representations in fixed dimensions provide superior efficiency on literature-based discovery tasks.
Resumo:
In biology, we frequently observe different species existing within the same environment. For example, there are many cell types in a tumour, or different animal species may occupy a given habitat. In modelling interactions between such species, we often make use of the mean field approximation, whereby spatial correlations between the locations of individuals are neglected. Whilst this approximation holds in certain situations, this is not always the case, and care must be taken to ensure the mean field approximation is only used in appropriate settings. In circumstances where the mean field approximation is unsuitable we need to include information on the spatial distributions of individuals, which is not a simple task. In this paper we provide a method that overcomes many of the failures of the mean field approximation for an on-lattice volume-excluding birth-death-movement process with multiple species. We explicitly take into account spatial information on the distribution of individuals by including partial differential equation descriptions of lattice site occupancy correlations. We demonstrate how to derive these equations for the multi-species case, and show results specific to a two-species problem. We compare averaged discrete results to both the mean field approximation and our improved method which incorporates spatial correlations. We note that the mean field approximation fails dramatically in some cases, predicting very different behaviour from that seen upon averaging multiple realisations of the discrete system. In contrast, our improved method provides excellent agreement with the averaged discrete behaviour in all cases, thus providing a more reliable modelling framework. Furthermore, our method is tractable as the resulting partial differential equations can be solved efficiently using standard numerical techniques.
Resumo:
Electricity is the cornerstone of modern life. It is essential to economic stability and growth, jobs and improved living standards. Electricity is also the fundamental ingredient for a dignified life; it is the source of such basic human requirements as cooked food, a comfortable living temperature and essential health care. For these reasons, it is unimaginable that today's economies could function without electricity and the modern energy services that it delivers. Somewhat ironically, however, the current approach to electricity generation also contributes to two of the gravest and most persistent problems threatening the livelihood of humans. These problems are anthropogenic climate change and sustained human poverty. To address these challenges, the global electricity sector must reduce its reliance on fossil fuel sources. In this context, the object of this research is twofold. Initially it is to consider the design of the Renewable Energy (Electricity) Act 2000 (Cth) (Renewable Electricity Act), which represents Australia's primary regulatory approach to increase the production of renewable sourced electricity. This analysis is conducted by reference to the regulatory models that exist in Germany and Great Britain. Within this context, this thesis then evaluates whether the Renewable Electricity Act is designed effectively to contribute to a more sustainable and dignified electricity generation sector in Australia. On the basis of the appraisal of the Renewable Electricity Act, this thesis contends that while certain aspects of the regulatory regime have merit, ultimately its design does not represent an effective and coherent regulatory approach to increase the production of renewable sourced electricity. In this regard, this thesis proposes a number of recommendations to reform the existing regime. These recommendations are not intended to provide instantaneous or simple solutions to the current regulatory regime. Instead, the purpose of these recommendations is to establish the legal foundations for an effective regulatory regime that is designed to increase the production of renewable sourced electricity in Australia in order to contribute to a more sustainable and dignified approach to electricity production.
Resumo:
Introduction. The purpose of this chapter is to address the question raised in the chapter title. Specifically, how can models of motor control help us understand low back pain (LBP)? There are several classes of models that have been used in the past for studying spinal loading, stability, and risk of injury (see Reeves and Cholewicki (2003) for a review of past modeling approaches), but for the purpose of this chapter we will focus primarily on models used to assess motor control and its effect on spine behavior. This chapter consists of 4 sections. The first section discusses why a shift in modeling approaches is needed to study motor control issues. We will argue that the current approach for studying the spine system is limited and not well-suited for assessing motor control issues related to spine function and dysfunction. The second section will explore how models can be used to gain insight into how the central nervous system (CNS) controls the spine. This segues segue nicely into the next section that will address how models of motor control can be used in the diagnosis and treatment of LBP. Finally, the last section will deal with the issue of model verification and validity. This issue is important since modelling accuracy is critical for obtaining useful insight into the behavior of the system being studied. This chapter is not intended to be a critical review of the literature, but instead intended to capture some of the discussion raised during the 2009 Spinal Control Symposium, with some elaboration on certain issues. Readers interested in more details are referred to the cited publications.
Resumo:
This project’s aim was to create new experimental models in small animals for the investigation of infections related to bone fracture fixation implants. Animal models are essential in orthopaedic trauma research and this study evaluated new implants and surgical techniques designed to improve standardisation in these experiments, and ultimately to minimise the number of animals needed in future work. This study developed and assessed procedures using plates and inter-locked nails to stabilise fractures in rabbit thigh bones. Fracture healing was examined with mechanical testing and histology. The results of this work contribute to improvements in future small animal infection experiments.
Resumo:
Pavlovian fear conditioning is a robust technique for examining behavioral and cellular components of fear learning and memory. In fear conditioning, the subject learns to associate a previously neutral stimulus with an inherently noxious co-stimulus. The learned association is reflected in the subjects' behavior upon subsequent re-exposure to the previously neutral stimulus or the training environment. Using fear conditioning, investigators can obtain a large amount of data that describe multiple aspects of learning and memory. In a single test, researchers can evaluate functional integrity in fear circuitry, which is both well characterized and highly conserved across species. Additionally, the availability of sensitive and reliable automated scoring software makes fear conditioning amenable to high-throughput experimentation in the rodent model; thus, this model of learning and memory is particularly useful for pharmacological and toxicological screening. Due to the conserved nature of fear circuitry across species, data from Pavlovian fear conditioning are highly translatable to human models. We describe equipment and techniques needed to perform and analyze conditioned fear data. We provide two examples of fear conditioning experiments, one in rats and one in mice, and the types of data that can be collected in a single experiment. © 2012 Springer Science+Business Media, LLC.
Resumo:
Pavlovian fear conditioning, also known as classical fear conditioning is an important model in the study of the neurobiology of normal and pathological fear. Progress in the neurobiology of Pavlovian fear also enhances our understanding of disorders such as posttraumatic stress disorder (PTSD) and with developing effective treatment strategies. Here we describe how Pavlovian fear conditioning is a key tool for understanding both the neurobiology of fear and the mechanisms underlying variations in fear memory strength observed across different phenotypes. First we discuss how Pavlovian fear models aspects of PTSD. Second, we describe the neural circuits of Pavlovian fear and the molecular mechanisms within these circuits that regulate fear memory. Finally, we show how fear memory strength is heritable; and describe genes which are specifically linked to both changes in Pavlovian fear behavior and to its underlying neural circuitry. These emerging data begin to define the essential genes, cells and circuits that contribute to normal and pathological fear.