474 resultados para Three-layer
Resumo:
Realistic plant models are important for leaf area and plant volume estimation, reconstruction of growth canopies, structure generation of the plant, reconstruction of leaf surfaces and agrichemical spray droplet modelling. This article investigates several different scanning devices for obtaining a three dimensional digitisation of plant leaves with a point cloud resolution of 200-500μm. The devices tested were a Roland mdx-20, Microsoft Kinect, Roland lpx-250, Picoscan and Artec S. The applicability of each of these devices for scanning plant leaves is discussed. The most suitable tested digitisation device for scanning plant leaves is the Artec S scanner.
Resumo:
In this study we report the molecular design, synthesis, characterization, and photovoltaic properties of a series of diketopyrrolopyrrole (DPP) and dithienothiophene (DTT) based donor-acceptor random copolymers. The six random copolymers are obtained via Stille coupling polymerization using various concentration ratios of donor to acceptor in the conjugated backbone. Bis(trimethylstannyl)thiophene was used as the bridge block to link randomly with the two comonomers 5-(bromothien-2-yl)-2,5-dialkylpyrrolo[3,4-c]pyrrole-1, 4-dione and 2,6-dibromo-3,5-dipentadecyl-dithieno[3,2-b;2′,3′-d] thiophene. The optical properties of these copolymers clearly reveal a change in the absorption band through optimization of the donor-acceptor ratio in the backbone. Additionally, the solution processability of the copolymers is modified through the attachment of different bulky alkyl chains to the lactam N-atoms of the DPP moiety. Applications of the polymers as light-harvesting and electron-donating materials in solar cells, in conjunction with PCBM as acceptor, show power conversion efficiencies (PCEs) of up to 5.02%.
Resumo:
Realistic virtual models of leaf surfaces are important for a number of applications in the plant sciences, such as modelling agrichemical spray droplet movement and spreading on the surface. In this context, the virtual surfaces are required to be sufficiently smooth to facilitate the use of the mathematical equations that govern the motion of the droplet. While an effective approach is to apply discrete smoothing D2-spline algorithms to reconstruct the leaf surfaces from three-dimensional scanned data, difficulties arise when dealing with wheat leaves that tend to twist and bend. To overcome this topological difficulty, we develop a parameterisation technique that rotates and translates the original data, allowing the surface to be fitted using the discrete smoothing D2-spline methods in the new parameter space. Our algorithm uses finite element methods to represent the surface as a linear combination of compactly supported shape functions. Numerical results confirm that the parameterisation, along with the use of discrete smoothing D2-spline techniques, produces realistic virtual representations of wheat leaves.
Resumo:
This study analyzes toxic chemical substance management in three U.S. manufacturing sectors from 1991 to 2008. Decomposition analysis applying the logarithmic mean Divisia index is used to analyze changes in toxic chemical substance emissions by the following five factors: cleaner production, end-of-pipe treatment, transfer for further management, mixing of intermediate materials, and production scale. Based on our results, the chemical manufacturing sector reduced toxic chemical substance emissions mainly via end-of-pipe treatment. In the meantime, transfer for further management contributed to the reduction of toxic chemical substance emissions in the metal fabrication industry. This occurred because the environmental business market expanded in the 1990s, and the infrastructure for the recycling of metal and other wastes became more efficient. Cleaner production is the main contributor to toxic chemical reduction in the electrical product industry. This implies that the electrical product industry is successful in developing a more environmentally friendly product design and production process.
Resumo:
Purpose : To investigate the application of retinal nerve fibre layer (RNFL) thickness as a marker for severity of diabetic peripheral neuropathy (DPN) in people with Type 2 diabetes. Methods : This was a cross-sectional study whereby 61 participants (mean age 61 [41-75 years], mean duration of diabetes 14 [1-40 years], 70% male) with Type 2 diabetes and DPN underwent optical coherence tomography (OCT) scans. Global and 4 quadrant (TSNI) RNFL thicknesses were measured at 3.45mm around the optic nerve head of one eye. Neuropathy disability score (NDS) was used to assess the severity of DPN on a 0 to 10 scale. Participants were divided into three age-matched groups representing mild (NDS=3-5), moderate (NDS=6-8) and severe (NDS=9-10) neuropathy. Two regression models were fitted for statistical analysis: 1) NDS scores as co-variate for global and quadrant RNFL thicknesses, 2) NDS groups as a factor for global RNFL thickness only. Results : Mean (SD) RNFL thickness (µm) was 103(9) for mild neuropathy (n=34), 101(10) for moderate neuropathy (n=16) and 95(13) in the group with severe neuropathy (n=11). Global RNFL thickness and NDS scores were statistically significantly related (b=-1.20, p=0.048). When neuropathy was assessed across groups, a trend of thinner mean RNFL thickness was observed with increasing severity of neuropathy; however, this result was not statistically significant (F=2.86, p=0.065). TSNI quadrant analysis showed that mean RNFL thickness reduction in the inferior quadrant was 2.55 µm per 1 unit increase in NDS score (p=0.005). However, the regression coefficients were not statistically significant for RNFL thickness in the superior (b=-1.0, p=0.271), temporal (b=-0.90, p=0.238) and nasal (b=-0.99, p=0.205) quadrants. Conclusions : RNFL thickness was reduced with increasing severity of DPN and the effect was most evident in the inferior quadrant. Measuring RNFL thickness using OCT may prove to be a useful, non-invasive technique for identifying severity of DPN and may also provide additional insight into common mechanisms for peripheral neuropathy and RNFL damage.
Resumo:
This paper explores the possibility of connecting two Wind Turbine Generators (WTG) to the grid using a single three level inverter. In the proposed system the rectified output of one WTG is connected across the upper dc-link capacitor of a standard diode clamped three level inverter. Similarly the rectified output of the other WTG is connected across the lower capacitor. This particular combination has several advantages such as, direct connection to the grid, reduced parts count, improved reliability and high power capacity. However, the major problem in the proposed system is the imminent imbalance of dc-link voltages. Under such conditions conventional modulation methods fail to produce desired voltage and current waveforms. A detailed analysis on this issue and a novel space vector modulation method, as the solution, are proposed in this paper. To track the Maximum power point of each WTG a power sharing algorithm is proposed. Simulation results are presented to attest the efficacy of the proposed system.
Resumo:
This was another in the project of using my three pseudonyms to investigate the strategic potential of the fictocritical as an approach to making visual art. It was large scale single artwork that took place over 21 days and combined 2D, 3D, Time-based elements and performance in an attempt to construct a Gesamtkunstwerk. Over the course of the exhibition I critically and creatively engaged with political, social, economic and cultural issues thorugh opening up a range of rhetorical modes such as the lyrical, the elegiac, the rhapsodic, the humorous, the parodic and the satirical.
Resumo:
The competent leadership of digital transformation needs to involve the board of directors. The reported lack of such capability in boards is becoming a pressing issue. A part of leadership in such transformation is the board of director’s competence to lead Enterprise Business Technology Governance (EBTG). In this paper we take the position that EBTG competencies are essential in boards, because competent EBTG has been shown to contribute to increased revenue, profit, and returns. We update and expand on the results of a multi-method approach to the development of a set of three board of director competencies needed for effective EBTG.
Resumo:
Ultrathin hematite (α-Fe2O3) film deposited on a TiO2 underlayer as a photoanode for photoelectrochemical water splitting was described. The TiO2 underlayer was coated on conductive fluorine-doped tin oxide (FTO) glass by spin coating. The hematite films were formed layer-by-layer by repeating the separated two-phase hydrolysis-solvothermal reaction of iron(III) acetylacetonate and aqueous ammonia. A photocurrent density of 0.683 mA cm−2 at +1.5 V vs. RHE (reversible hydrogen electrode) was obtained under visible light (>420 nm, 100 mW cm−2) illumination. The TiO2 underlayer plays an important role in the formation of hematite film, acting as an intermediary to alleviate the dead layer effect and as a support of large surface areas to coat greater amounts of Fe2O3. The as-prepared photoanodes are notably stable and highly efficient for photoelectrochemical water splitting under visible light. This study provides a facile synthesis process for the controlled production of highly active ultrathin hematite film and a simple route for photocurrent enhancement using several photoanodes in tandem.
Resumo:
Optimisation of organic Rankine cycles(ORCs for binary cycle applications could play a major role in determining the competitiveness of low to moderate renewable sources. An important aspect of the optimisation is to maximise the turbine output power for a given resource. This requires careful attention to the turbine design notably through numerical simulations. Challenges in the numerical modelling of radial-inflow turbines using high-density working fluids still need to be addressed in order to improve the turbine design and better optimise ORCs. Thispaper presents preliminary 3D numerical simulations of a high-density radial-inflow ORC turbine in sensible geothermal conditions. Following extensive investigation of the operating conditions and thermodynamic cycle analysis, therefrigerant R143a is chosen as the high-density working fluid. The 1D design of the candidate radial-inflow turbine is presented in details. Furthermore, commercially-available software Ansys-CFX is used to perform preliminary steady-state 3D CFD simulations of the candidate R143a radial-inflow turbine for a number of operating conditions including off-design conditions. The real-gas properties are obtained using the Peng–Robinson equations of state.The thermodynamic ORC cycle is presented. The preliminary design created using dedicated radial-inflow turbine software Concepts-Rital is discussed and the 3D CFD results are presented and compared against the meanline analysis.
Resumo:
This paper presents a numerical model for understanding particle transport and deposition in metal foam heat exchangers. Two-dimensional steady and unsteady numerical simulations of a standard single row metal foam-wrapped tube bundle are performed for different particle size distributions, i.e. uniform and normal distributions. Effects of different particle sizes and fluid inlet velocities on the overall particle transport inside and outside the foam layer are also investigated. It was noted that the simplification made in the previously-published numerical works in the literature, e.g. uniform particle deposition in the foam, is not necessarily accurate at least for the cases considered here. The results highlight the preferential particle deposition areas both along the tube walls and inside the foam using a developed particle deposition likelihood matrix. This likelihood matrix is developed based on three criteria being particle local velocity, time spent in the foam, and volume fraction. It was noted that the particles tend to deposit near both front and rear stagnation points. The former is explained by the higher momentum and direct exposure of the particles to the foam while the latter only accommodate small particles which can be entrained in the recirculation region formed behind the foam-wrapped tubes.
Resumo:
A nonlinear interface element modelling method is formulated for the prediction of deformation and failure of high adhesive thin layer polymer mortared masonry exhibiting failure of units and mortar. Plastic flow vectors are explicitly integrated within the implicit finite element framework instead of relying on predictor–corrector like approaches. The method is calibrated using experimental data from uniaxial compression, shear triplet and flexural beam tests. The model is validated using a thin layer mortared masonry shear wall, whose experimental datasets are reported in the literature and is used to examine the behaviour of thin layer mortared masonry under biaxial loading.