541 resultados para Power line interference
Resumo:
Optimisation of Organic Rankine Cycle (ORCs) for binary-cycle geothermal applications could play a major role in determining the competitiveness of low to moderate temperature geothermal resources. Part of this optimisation process is matching cycles to a given resource such that power output can be maximised. Two major and largely interrelated components of the cycle are the working fluid and the turbine. Both components need careful consideration: the selection of working fluid and appropriate operating conditions as well as optimisation of the turbine design for those conditions will determine the amount of power that can be extracted from a resource. In this paper, we present the rationale for the use of radial-inflow turbines for ORC applications and the preliminary design of several radial-inflow machines based on a number of promising ORC systems that use five different working fluids: R134a, R143a, R236fa, R245fa and n-Pentane. Preliminary meanline analysis lead to the generation of turbine designs for the various cycles with similar efficiencies (77%) but large differences in dimensions (139–289 mm rotor diameter). The highest performing cycle, based on R134a, was found to produce 33% more net power from a 150 °C resource flowing at 10 kg/s than the lowest performing cycle, based on n-Pentane.
Resumo:
Optimisation of Organic Rankine Cycles (ORCs) for binary-cycle geothermal applications could play a major role in the competitiveness of low to moderate temperature geothermal resources. Part of this optimisation process is matching cycles to a given resource such that power output can be maximised. Two major and largely interrelated components of the cycle are the working fluid and the turbine. Both components need careful consideration. Due to the temperature differences in geothermal resources a one-size-fits-all approach to surface power infrastructure is not appropriate. Furthermore, the traditional use of steam as a working fluid does not seem practical due to the low temperatures of many resources. A variety of organic fluids with low boiling points may be utilised as ORC working fluids in binary power cycle loops. Due to differences in thermodynamic properties, certain fluids are able to extract more heat from a given resource than others over certain temperature and pressure ranges. This enables the tailoring of power cycle infrastructure to best match the geothermal resource through careful selection of the working fluid and turbine design optimisation to yield the optimum overall cycle performance. This paper presents the rationale for the use of radial-inflow turbines for ORC applications and the preliminary design of several radial-inflow turbines based on a selection of promising ORC cycles using five different high-density working fluids: R134a, R143a, R236fa, R245fa and n-Pentane at sub- or trans-critical conditions. Numerous studies published compare a variety of working fluids for various ORC configurations. However, there is little information specifically pertaining to the design and implementation of ORCs using realistic radial turbine designs in terms of pressure ratios, inlet pressure, rotor size and rotational speed. Preliminary 1D analysis leads to the generation of turbine designs for the various cycles with similar efficiencies (77%) but large differences in dimensions (139289 mm rotor diameter). The highest performing cycle (R134a) was found to produce 33% more net power from a 150°C resource flowing at 10 kg/s than the lowest performing cycle (n-Pentane).
Resumo:
Performance of urban transit systems may be quantified and assessed using transit capacity and productive capacity in planning, design and operational management activities. Bunker (4) defines important productive performance measures of an individual transit service and transit line, which are extended in this paper to quantify efficiency and operating fashion of transit services and lines. Comparison of a hypothetical bus line’s operation during a morning peak hour and daytime hour demonstrates the usefulness of productiveness efficiency and passenger transmission efficiency, passenger churn and average proportion line length traveled to the operator in understanding their services’ and lines’ productive performance, operating characteristics, and quality of service. Productiveness efficiency can flag potential pass-up activity under high load conditions, as well as ineffective resource deployment. Proportion line length traveled can directly measure operating fashion. These measures can be used to compare between lines/routes and, within a given line, various operating scenarios and time horizons to target improvements. The next research stage is investigating within-line variation using smart card passenger data and field observation of pass-ups. Insights will be used to further develop practical guidance to operators.
Resumo:
Performance of urban transit systems may be quantified and assessed using transit capacity and productive capacity in planning, design and operational management activities. Bunker (4) defines important productive performance measures of an individual transit service and transit line, which are extended in this paper to quantify efficiency and operating fashion of transit services and lines. Comparison of a hypothetical bus line’s operation during a morning peak hour and daytime hour demonstrates the usefulness of productiveness efficiency and passenger transmission efficiency, passenger churn and average proportion line length traveled to the operator in understanding their services’ and lines’ productive performance, operating characteristics, and quality of service. Productiveness efficiency can flag potential pass-up activity under high load conditions, as well as ineffective resource deployment. Proportion line length traveled can directly measure operating fashion. These measures can be used to compare between lines/routes and, within a given line, various operating scenarios and time horizons to target improvements. The next research stage is investigating within-line variation using smart card passenger data and field observation of pass-ups. Insights will be used to further develop practical guidance to operators.
Resumo:
Significant wheel-rail dynamic forces occur because of imperfections in the wheels and/or rail. One of the key responses to the transmission of these forces down through the track is impact force on the sleepers. Dynamic analysis of nonlinear systems is very complicated and does not lend itself easily to a classical solution of multiple equations. Trying to deduce the behaviour of track components from experimental data is very difficult because such data is hard to obtain and applies to only the particular conditions of the track being tested. The finite element method can be the best solution to this dilemma. This paper describes a finite element model using the software package ANSYS for various sized flat defects in the tread of a wheel rolling at a typical speed on heavy haul track. The paper explores the dynamic response of a prestressed concrete sleeper to these defects.
Resumo:
The reliable operation of the electrical system at Callide Power Station is of extreme importance to the normal everyday running of the Station. This study applied the principles of reliability to do an analysis on the electrical system at Callide Power Station. It was found that the level of expected outage cost increased exponentially with a declining level of maintenance. Concluding that even in a harsh economic electricity market where CS Energy tries and push their plants to the limit, maintenance must not be neglected. A number of system configurations were found to increase the reliability of the system and reduce the expected outage costs. A number of other advantages were identified as a result of using reliability principles to do this study on the Callide electrical system configuration.
Resumo:
This paper presents a reliability assessment of a substation, part of the Queensland transmission network in Australia. As part of a maintenance considerations, this study utilises the substation reliability assessment package STAREL to quantitatively compare the reliability improvement achieved by two circuit breaker reinforcement alternatives for Swanbank circuit breaker replacement or refurbishment. Substation reliability is interpreted on the basis of outage frequency and outage duration indices for each individual transmission line terminated in Swanbank 'B' substation. By considering the reliability indices in this paper with the cost associated conducted by POWERLINK Queensland, a Swanbank 'B' reinforcement alternative can be selected that optimises both transmission line security and the costs incurred in achieving it.
Resumo:
This paper describes a new approach to establish the probabilistic cable rating based on cable thermal environment studies. Knowledge of cable parameters has been well established. However the environment in which the cables are buried is not so well understood. Research in Queensland University of Technology has been aimed at obtaining and analysing actual daily field values of thermal resistivity and diffusivity of the soil around power cables. On-line monitoring systems have been developed and installed with a data logger system and buried spheres that use an improved technique to measure thermal resistivity and diffusivity over a short period. Based on the long-term continuous field data for more than 4 years, a probabilistic approach is developed to establish the correlation between the measured field thermal resistivity values and rainfall data from weather bureau records. Hence, a probabilistic cable rating can be established based on monthly probabilistic distribution of thermal resistivity
Resumo:
The implementation guide for the surveillance of CLABSI in intensive care units (ICU) was produced by the Healthcare Associated Infection (HAI) Technical Working Group of the Australian Commission on Safety and Quality in Health Care(ACSQHC), and endorsed by the ACSQHC HAI Advisory Committee. State surveillance units, the ACSQHC and the Australian and New Zealand Intensive Care Society (ANZICS) have representatives on the Technical Working Group, and have provided input into this document.
Resumo:
This collaborative project by Daniel Mafe and Andrew Brown, one of a number in they have been involved in together, conjoins painting and digital sound into a single, large scale, immersive exhibition/installation. The work as a whole acts as an interstitial point between contrasting approaches to abstraction: the visual and aural, the digital and analogue are pushed into an alliance and each works to alter perceptions of the other. For example, the paintings no longer mutely sit on the wall to be stared into. The sound seemingly emanating from each work shifts the viewer’s typical visual perception and engages their aural sensibilities. This seems to make one more aware of the objects as objects – the surface of each piece is brought into scrutiny – and immerses the viewer more viscerally within the exhibition. Similarly, the sonic experience is focused and concentrated spatially by each painted piece even as the exhibition is dispersed throughout the space. The sounds and images are similar in each local but not identical, even though they may seem to be the same from casual interaction, closer attention will quickly show this is not the case. In preparing this exhibition each artist has had to shift their mode of making to accommodate the other’s contribution. This was mainly done by a process of emptying whereby each was called upon to do less to the works they were making and to iterate the works toward a shared conception, blurring notions of individual imagination while maintaining material authorship. Empting was necessary to enable sufficient porosity where each medium allowed the other entry to its previously gated domain. The paintings are simple and subtle to allow the odd sonic textures a chance to work on the viewer’s engagement with them. The sound remains both abstract, using noise-like textures, and at a low volume to allow the audience’s attention to wander back and forth between aspects of the works.
Resumo:
Power system restoration after a large area outage involves many factors, and the procedure is usually very complicated. A decision-making support system could then be developed so as to find the optimal black-start strategy. In order to evaluate candidate black-start strategies, some indices, usually both qualitative and quantitative, are employed. However, it may not be possible to directly synthesize these indices, and different extents of interactions may exist among these indices. In the existing black-start decision-making methods, qualitative and quantitative indices cannot be well synthesized, and the interactions among different indices are not taken into account. The vague set, an extended version of the well-developed fuzzy set, could be employed to deal with decision-making problems with interacting attributes. Given this background, the vague set is first employed in this work to represent the indices for facilitating the comparisons among them. Then, a concept of the vague-valued fuzzy measure is presented, and on that basis a mathematical model for black-start decision-making developed. Compared with the existing methods, the proposed method could deal with the interactions among indices and more reasonably represent the fuzzy information. Finally, an actual power system is served for demonstrating the basic features of the developed model and method.
Resumo:
A short 27 mins docudrama film. The Brisbane Line is a neo noir drama-documentary depicting the forgotten history surrounding the subtropical capital of Queensland, Australia. Set in the shadows of this sunshine city's unsolved crime, the film explores gaps between fact and fiction, memory and myth and excavates Brisbane's original sin [from DVD container]. The Brisbane Line is a film noir about the 1940s police force & corruption in Brisbane. The film is a creative research output, screened at Tribal Cinemas, Brisbane on the 8th November 2011.
Resumo:
The domestication of creative software and hardware has been a significant factor in the recent proliferation of still and moving image creation. Booming numbers of amateur image-makers have the resources, skills and ambitions to create and distribute their work on a mass scale. At the same time, contemporary art seems increasingly dominated by ‘post-medium’ practices that adopt and adapt the representational techniques of mass culture, rather than overtly reject or oppose them. As a consequence of this network of forces, the field of image and video production is no longer the exclusive specialty of art and the mass media, and art may no longer be the most prominent watchdog of mass image culture. Intuitively and intentionally, contemporary artists are responding to these shifting conditions. From the position of a creative practitioner and researcher, this paper examines the strategies that contemporary artists use to engage with the changing relationships between image culture, lived experience and artistic practice. By examining the intersections between W.J.T. Mitchell’s detailed understanding of visual literacy and Jacques Derrida’s philosophical models of reading and writing, I identify ‘editing’ as a broad methodology that describes how practitioners creatively and critically engage with the field of still and moving images. My contention is that by emphasising the intersections of looking and making, ‘reading’ and ‘writing’, artists provide crucial jump cuts, pauses and distortions in the medley of our mediated experiences.
Resumo:
A new control method for battery storage to maintain acceptable voltage profile in autonomous microgrids is proposed in this article. The proposed battery control ensures that the bus voltages in the microgrid are maintained during disturbances such as load change, loss of micro-sources, or distributed generations hitting power limit. Unlike the conventional storage control based on local measurements, the proposed method is based on an advanced control technique, where the reference power is determined based on the voltage drop profile at the battery bus. An artificial neural network based controller is used to determine the reference power needed for the battery to hold the microgrid voltage within regulation limits. The pattern of drop in the local bus voltage during power imbalance is used to train the controller off-line. During normal operation, the battery floats with the local bus voltage without any power injection. The battery is charged or discharged during the transients with a high gain feedback loop. Depending on the rate of voltage fall, it is switched to power control mode to inject the reference power determined by the proposed controller. After a defined time period, the battery power injection is reduced to zero using slow reverse-droop characteristics, ensuring a slow rate of increase in power demand from the other distributed generations. The proposed control method is simulated for various operating conditions in a microgrid with both inertial and converter interfaced sources. The proposed battery control provides a quick load pick up and smooth load sharing with the other micro-sources in a disturbance. With various disturbances, maximum voltage drop over 8% with conventional energy storage is reduced within 2.5% with the proposed control method.