419 resultados para Nominal loads
Resumo:
Intelligent Transport Systems (ITS) have the potential to substantially reduce the number of crashes caused by human errors at railway levels crossings. However, such systems could overwhelm drivers, generate different types of driver errors and have negative effects on safety at level crossing. The literature shows an increasing interest for new ITS for increasing driver situational awareness at level crossings, as well as evaluations of such new systems on compliance. To our knowledge, the potential negative effects of such technologies have not been comprehensively evaluated yet. This study aimed at assessing the effect of different ITS interventions, designed to enhance driver behaviour at railway crossings, on driver’s cognitive loads. Fifty eight participants took part in a driving simulator study in which three ITS devices were tested: an in-vehicle visual ITS, an in-vehicle audio ITS, and an on-road valet system. Driver cognitive load was objectively and subjectively assessed for each ITS intervention. Objective data were collected from a heart rate monitor and an eye tracker, while subjective data was collected with the NASA-TLX questionnaire. Overall, results indicated that the three trialled technologies did not result in significant changes in cognitive load while approaching crossings.
Resumo:
This paper deals with a finite element modelling method for thin layer mortared masonry systems. In this method, the mortar layers including the interfaces are represented using a zero thickness interface element and the masonry units are modelled using an elasto-plastic, damaging solid element. The interface element is formulated using two regimes; i) shear-tension and ii) shearcompression. In the shear-tension regime, the failure of joint is consiedered through an eliptical failure criteria and in shear-compression it is considered through Mohr Coulomb type failure criterion. An explicit integration scheme is used in an implicit finite element framework for the formulation of the interface element. The model is calibrated with an experimental dataset from thin layer mortared masonry prism subjected to uniaxial compression, a triplet subjected to shear loads a beam subjected to flexural loads and used to predict the response of thin layer mortared masonry wallettes under orthotropic loading. The model is found to simulate the behaviour of a thin layer mortated masonry shear wall tested under pre-compression and inplane shear quite adequately. The model is shown to reproduce the failure of masonry panels under uniform biaxial state of stresses.
Resumo:
There is an increasing demand for Unmanned Aerial Systems (UAS) to carry suspended loads as this can provide significant benefits to several applications in agriculture, law enforcement and construction. The load impact on the underlying system dynamics should not be neglected as significant feedback forces may be induced on the vehicle during certain flight manoeuvres. The constant variation in operating point induced by the slung load also causes conventional controllers to demand increased control effort. Much research has focused on standard multi-rotor position and attitude control with and without a slung load. However, predictive control schemes, such as Nonlinear Model Predictive Control (NMPC), have not yet been fully explored. To this end, we present a novel controller for safe and precise operation of multi-rotors with heavy slung load in three dimensions. The paper describes a System Dynamics and Control Simulation Toolbox for use with MATLAB/SIMULINK which includes a detailed simulation of the multi-rotor and slung load as well as a predictive controller to manage the nonlinear dynamics whilst accounting for system constraints. It is demonstrated that the controller simultaneously tracks specified waypoints and actively damps large slung load oscillations. A linear-quadratic regulator (LQR) is derived and control performance is compared. Results show the improved performance of the predictive controller for a larger flight envelope, including aggressive manoeuvres and large slung load displacements. The computational cost remains relatively small, amenable to practical implementations.
Resumo:
This thesis develops and applies an analytical method to treat the blast response of glass façades and studies the influence of controlling parameters such as all component materials and geometric properties, support conditions and energy absorption, and hence establishes a framework for their design for a credible blast event.
Resumo:
While numerous full scale experimental programs have been conducted around the world over the past 50 years to investigate the behaviour of steel portal frame buildings, none have comprehensively investigated the behaviour of such buildings under wind uplift. Wind uplift loads often govern designs in the Australian environment and this became the subject of a recent research project at Queensland University of Technology (OUT). This paper describes the full scale experiments on a steel portal frame building subject to wind uplift, racking and gravity loads. The portal rafter and column members utilised hollow flange beam (HFB) sections [5-8] though the paper's findings on the theoretical and experimental building responses relate to conventional types of steel portal frame buildings.
Resumo:
To effectively address the high rate of failure of Insulated Rail Joints (IRJs) in the heavy haul lines, a research plan was designed and implemented with particular attention to understand their mechanical behaviour and deterioration process. In this paper, part of this ongoing research is described. During the past decades many studies have tried to improve the service life of IRJs by introducing a new structural design or material for IRJ components. This paper looks into this problem from a different perspective highlighting the significance of localised condition of track to the loads and responses of the IRJs. Results from a series of field measurements conducted in a rail track within the Australian Rail Track Corporation (ARTC) network are discussed. The interactive effects of IRJ responses and localised track condition are further investigated using the results obtained from numerical simulations. The field measurements and the simulation results provide valuable insight on the influence of track condition to the behaviour of IRJs.
Resumo:
Concrete-filled steel tubular (CFST) columns have shown great potential as axial load carrying member and used widely in many mission critical infrastructures. However, attention is needed to strengthen these members where transverse impact force is expected to occur due to vehicle collisions. In this work, finite element (FE) model of carbon fibre reinforced polymer (CFRP) strengthened CFST columns are developed and the effect of CFRP bond length is investigated under transverse impact loading. Initially the numerical models have been validated by comparing impact test results from literature. The validated models are then used for detail parametric studies by varying the length of externally bonded CFRP composites. The parameters considered for this research are impact velocity, impact mass, CFRP modulus, adhesive type, and axial static loading. It has been observed that the effect of CFRP strengthening is consistent after an optimum effective bond length of CFRP wrapping. The effect of effective bond length has been studied for above parameters. The results show that, under combined axial static and transverse impact loads CFST columns can successfully prevent global buckling failure by strengthening only 34% of column length. Therefore, estimation of effective bond length is essential to utilise the CFRP composites cost effectively.
Resumo:
Efficient and accurate geometric and material nonlinear analysis of the structures under ultimate loads is a backbone to the success of integrated analysis and design, performance-based design approach and progressive collapse analysis. This paper presents the advanced computational technique of a higher-order element formulation with the refined plastic hinge approach which can evaluate the concrete and steel-concrete structure prone to the nonlinear material effects (i.e. gradual yielding, full plasticity, strain-hardening effect when subjected to the interaction between axial and bending actions, and load redistribution) as well as the nonlinear geometric effects (i.e. second-order P-d effect and P-D effect, its associate strength and stiffness degradation). Further, this paper also presents the cross-section analysis useful to formulate the refined plastic hinge approach.
Resumo:
Frequency Domain Spectroscopy (FDS) is one of the major techniques used for determining the condition of the cellulose based paper and pressboard components in large oil/paper insulated power transformers. This technique typically makes use of a sinusoidal voltage source swept from 0.1 mHz to 1 kHz. The excitation test voltage source used must meet certain characteristics, such as high output voltage, high fidelity, low noise and low harmonic content. The amplifier used; in the test voltage source; must be able to drive highly capacitive loads. This paper proposes that a switch-mode assisted linear amplifier (SMALA) can be used in the test voltage source to meet these criteria. A three level SMALA prototype amplifier was built to experimentally demonstrate the effectiveness of this proposal. The developed SMALA prototype shows no discernable harmonic distortion in the output voltage waveform, or the need for output filters, and is therefore seen as a preferable option to pulse width modulated digital amplifiers. The lack of harmonic distortion and high frequency switching noise in the output voltage of this SMALA prototype demonstrates its feasibility for applications in FDS, particularly on highly capacitive test objects such as transformer insulation systems.
Resumo:
Structural fire safety has become one of the key considerations in the design and maintenance of the built infrastructure. Conventionally the fire resistance rating of load bearing Light gauge Steel Frame (LSF) walls is determined based on the standard time-temperature curve given in ISO 834. Recent research has shown that the true fire resistance of building elements exposed to building fires can be less than their fire resistance ratings determined based on standard fire tests. It is questionable whether the standard time-temperature curve truly represents the fuel loads in modern buildings. Therefore an equivalent fire severity approach has been used in the past to obtain fire resistance rating. This is based on the performance of a structural member exposed to a realistic design fire curve in comparison to that of standard fire time-temperature curve. This paper presents the details of research undertaken to develop an energy based time equivalent approach to obtain the fire resistance ratings of LSF walls exposed to realistic design fire curves with respect to standard fire exposure. This approach relates to the amount of energy transferred to the member. The proposed method was used to predict the fire resistance ratings of single and double layer plasterboard lined and externally insulated LSF walls. The predicted fire ratings were compared with the results from finite element analyses and fire design rules for three different wall configurations exposed to both rapid and prolonged fires. The comparison shows that the proposed energy method can be used to obtain the fire resistance ratings of LSF walls in the case of prolonged fires.
Resumo:
Hollow flange channel section is a cold-formed high-strength and thin-walled steel section with a unique shape including two rectangular hollow flanges and a slender web. Due to its mono-symmetric characteristics, it will also be subjected to torsion when subjected to transverse loads in practical applications. Past research on steel beams subject to torsion has concentrated on open sections while very few steel design standards give suitable design rules for torsion design. Since the hollow flange channel section is different from conventional open sections, its torsional behaviour remains unknown to researchers. Therefore the elastic behaviour of hollow flange channel sections subject to uniform and non-uniform torsion, and combined torsion and bending was investigated using the solutions of appropriate differential equilibrium equations. The section torsion shear flow, warping normal stress distribution, and section constants including torsion constant and warping constant were obtained. The results were compared with those from finite element analyses that verified the accuracy of analytical solutions. Parametric studies were undertaken for simply supported beams subject to a uniformly distributed torque and a uniformly distributed transverse load applied away from the shear centre. This paper presents the details of this research into the elastic behaviour and strength of hollow flange channel sections subject to torsion and bending and the results.
Resumo:
The LiteSteel beam (LSB) is a cold-formed high strength steel channel section made of two torsionally rigid closed flanges and a slender web. Due to its mono-symmetric characteristics, its centroid and shear centre do not coincide. The LSBs can be used in floor systems as joists or bearers and in these applications they are often subjected to transverse loads that are applied away from the shear centre. Hence they are often subjected to combined bending and torsion actions. Previous researches on LSBs have concentrated on their bending or shear behaviour and strengths, and only limited research has been undertaken on their combined bending and torsion behaviour. Therefore in this research a series of nine experiments was first conducted on LSBs subject to combined bending and torsion. Three LSB sections were tested to failure under eccentric loading at mid-span, and appropriate results were obtained from seven tests. A special test rig was used to simulate two different eccentricities and to provide accurate simple boundary conditions at the supports. Finite element models of tested LSBs were developed using ANSYS, and the ultimate strengths, failure modes, and load–displacement curves were obtained and compared with corresponding test results. Finite element analyses agreed well with test results and hence the developed models were used in a parametric study to investigate the effects of load locations, eccentricities, and spans on the combined bending and torsion behaviour of LSBs. The interaction between the ultimate bending and torsional moment capacities was studied and a simple design rule was proposed. This paper presents the details of the tests, finite element analyses, and parametric study of LSBs subject to combined bending and torsion, and the results.
Resumo:
The use of organophosphate esters (PFRs) as flame retardants and plasticizers has increased due to the ban of some brominated flame retardants. There is however some concern regarding the toxicity, particularly carcinogenicity and neurotoxicity, of some of the PFRs. In this study we applied wastewater analysis to assess use of PFRs by the Australian population. Influent samples were collected from eleven wastewater treatment plants (STPs) in Australia on Census day and analysed for PFRs using gas chromatography coupled with mass spectrometry (GC-MS). Per capita mass loads of PFRs were calculated using the accurate Census head counts. The results indicate that tris(2-butoxyethyl) phosphate (TBOEP) has the highest per capita input into wastewater followed by tris(2-chloroisopropyl) phosphate (TCIPP), tris(isobutyl) phosphate (TIBP), tris(2-chloroethyl) phosphate (TCEP) and tris(1,3-dichloroisopropyl) phosphate (TDCIPP). Similar PFR profiles were observed across the Australian STPs and a comparison with European and U.S. STPs indicated similar PFR concentrations. We estimate that approximately 2.1 mg person−1 day−1 of PFRs are input into Australian wastewater which equates to 16 tonnes per annum.
Resumo:
This paper investigates the influence of interlayer properties on the blast performance of laminated glass (LG) panels. A parametric study is carried out by varying the thickness and Young’s modulus (E) of the interlayer under two different blast loads. Results indicate the existence of a critical interlayer thickness (or E) that causes the onset of interlayer failure. This should be achieved in the design to enhance energy absorption, reduce support reactions and initiate a safer failure mode. Present findings provide information to achieve such design targets and enable safe and efficient performance of LGs under credible blast loads.
Resumo:
This paper reviews current design standards and test methods for blast-resistant glazing design and compares a typical design outcome with that from comprehensive finite-element (FE) analysis. Design standards are conservative and are limited to the design of relatively small glazed panels. Standard test methods are expensive, create environmental pollution, and can classify the hazard ratings of only smaller glazed panels. Here the design of a laminated glass (LG) panel is carried out according to an existing design standard, and then its performance is examined using comprehensive FE modeling and analysis. Finite-element results indicate that both glass panes crack, the interlayer yields with little damage, and the sealant joints do not fail for the designed blast load. This failure pattern satisfies some of the requirements for minimal hazard rating in the design standard. It is evident that interlayer thickness and material properties are important during the post-crack stage of an LG panel, but they are not accounted for in the design standards. The new information generated in this paper will contribute toward an enhanced blast design of LG panels.