761 resultados para Data Repository
Resumo:
Background Bactrocera dorsalis s.s. is a pestiferous tephritid fruit fly distributed from Pakistan to the Pacific, with the Thai/Malay peninsula its southern limit. Sister pest taxa, B. papayae and B. philippinensis, occur in the southeast Asian archipelago and the Philippines, respectively. The relationship among these species is unclear due to their high molecular and morphological similarity. This study analysed population structure of these three species within a southeast Asian biogeographical context to assess potential dispersal patterns and the validity of their current taxonomic status. Results Geometric morphometric results generated from 15 landmarks for wings of 169 flies revealed significant differences in wing shape between almost all sites following canonical variate analysis. For the combined data set there was a greater isolation-by-distance (IBD) effect under a ‘non-Euclidean’ scenario which used geographical distances within a biogeographical ‘Sundaland context’ (r2 = 0.772, P < 0.0001) as compared to a ‘Euclidean’ scenario for which direct geographic distances between sample sites was used (r2 = 0.217, P < 0.01). COI sequence data were obtained for 156 individuals and yielded 83 unique haplotypes with no correlation to current taxonomic designations via a minimum spanning network. BEAST analysis provided a root age and location of 540kya in northern Thailand, with migration of B. dorsalis s.l. into Malaysia 470kya and Sumatra 270kya. Two migration events into the Philippines are inferred. Sequence data revealed a weak but significant IBD effect under the ‘non-Euclidean’ scenario (r2 = 0.110, P < 0.05), with no historical migration evident between Taiwan and the Philippines. Results are consistent with those expected at the intra-specific level. Conclusions Bactrocera dorsalis s.s., B. papayae and B. philippinensis likely represent one species structured around the South China Sea, having migrated from northern Thailand into the southeast Asian archipelago and across into the Philippines. No migration is apparent between the Philippines and Taiwan. This information has implications for quarantine, trade and pest management.
Resumo:
A building information model (BIM) is an electronic repository of structured, three-dimensional data that captures both the physical and dynamic functional characteristics of a facility. In addition to its more traditional function as a tool to aid design and construction, a BIM can be used throughout the life cycle of a facility, functioning as a living database that places resources contained within the building in their spatial and temporal context. Through its comprehension of spatial relationships, a BIM can meaningfully represent and integrate previously isolated control and management systems and processes, and thereby provide a more intuitive interface to users. By placing processes in a spatial context, decision-making can be improved, with positive flow-on effects for security and efficiency. In this article, we systematically analyse the authorization requirements involved in the use of BIMs. We introduce the concept of using a BIM as a graphical tool to support spatial access control configuration and management (including physical access control). We also consider authorization requirements for regulating access to the structured data that exists within a BIM as well as to external systems and data repositories that can be accessed via the BIM interface. With a view to addressing these requirements we present a survey of relevant spatiotemporal access control models, focusing on features applicable to BIMs and highlighting capability gaps. Finally, we present a conceptual authorization framework that utilizes BIMs.
Resumo:
This article presents a methodology that integrates cumulative plots with probe vehicle data for estimation of travel time statistics (average, quartile) on urban networks. The integration reduces relative deviation among the cumulative plots so that the classical analytical procedure of defining the area between the plots as the total travel time can be applied. For quartile estimation, a slicing technique is proposed. The methodology is validated with real data from Lucerne, Switzerland and it is concluded that the travel time estimates from the proposed methodology are statistically equivalent to the observed values.
Resumo:
Structural health monitoring (SHM) refers to the procedure used to assess the condition of structures so that their performance can be monitored and any damage can be detected early. Early detection of damage and appropriate retrofitting will aid in preventing failure of the structure and save money spent on maintenance or replacement and ensure the structure operates safely and efficiently during its whole intended life. Though visual inspection and other techniques such as vibration based ones are available for SHM of structures such as bridges, the use of acoustic emission (AE) technique is an attractive option and is increasing in use. AE waves are high frequency stress waves generated by rapid release of energy from localised sources within a material, such as crack initiation and growth. AE technique involves recording these waves by means of sensors attached on the surface and then analysing the signals to extract information about the nature of the source. High sensitivity to crack growth, ability to locate source, passive nature (no need to supply energy from outside, but energy from damage source itself is utilised) and possibility to perform real time monitoring (detecting crack as it occurs or grows) are some of the attractive features of AE technique. In spite of these advantages, challenges still exist in using AE technique for monitoring applications, especially in the area of analysis of recorded AE data, as large volumes of data are usually generated during monitoring. The need for effective data analysis can be linked with three main aims of monitoring: (a) accurately locating the source of damage; (b) identifying and discriminating signals from different sources of acoustic emission and (c) quantifying the level of damage of AE source for severity assessment. In AE technique, the location of the emission source is usually calculated using the times of arrival and velocities of the AE signals recorded by a number of sensors. But complications arise as AE waves can travel in a structure in a number of different modes that have different velocities and frequencies. Hence, to accurately locate a source it is necessary to identify the modes recorded by the sensors. This study has proposed and tested the use of time-frequency analysis tools such as short time Fourier transform to identify the modes and the use of the velocities of these modes to achieve very accurate results. Further, this study has explored the possibility of reducing the number of sensors needed for data capture by using the velocities of modes captured by a single sensor for source localization. A major problem in practical use of AE technique is the presence of sources of AE other than crack related, such as rubbing and impacts between different components of a structure. These spurious AE signals often mask the signals from the crack activity; hence discrimination of signals to identify the sources is very important. This work developed a model that uses different signal processing tools such as cross-correlation, magnitude squared coherence and energy distribution in different frequency bands as well as modal analysis (comparing amplitudes of identified modes) for accurately differentiating signals from different simulated AE sources. Quantification tools to assess the severity of the damage sources are highly desirable in practical applications. Though different damage quantification methods have been proposed in AE technique, not all have achieved universal approval or have been approved as suitable for all situations. The b-value analysis, which involves the study of distribution of amplitudes of AE signals, and its modified form (known as improved b-value analysis), was investigated for suitability for damage quantification purposes in ductile materials such as steel. This was found to give encouraging results for analysis of data from laboratory, thereby extending the possibility of its use for real life structures. By addressing these primary issues, it is believed that this thesis has helped improve the effectiveness of AE technique for structural health monitoring of civil infrastructures such as bridges.
Resumo:
Many common diseases, such as the flu and cardiovascular disease, increase markedly in winter and dip in summer. These seasonal patterns have been part of life for millennia and were first noted in ancient Greece by both Hippocrates and Herodotus. Recent interest has focused on climate change, and the concern that seasons will become more extreme with harsher winter and summer weather. We describe a set of R functions designed to model seasonal patterns in disease. We illustrate some simple descriptive and graphical methods, a more complex method that is able to model non-stationary patterns, and the case–crossover for controlling for seasonal confounding.
Resumo:
Advances in information and communication technologies have brought about an information revolution, leading to fundamental changes in the way that information is collected or generated, shared and distributed. The importance of establishing systems in which research findings can be readily made available to and used by other researchers has long been recognized in international scientific collaborations. If the data access principles adopted by international scientific collaborations are to be effectively implemented they must be supported by the national policies and laws in place in the countries in which participating researchers are operating.
Resumo:
While undertaking the ANDS RDA Gold Standard Record Exemplars project, research data sharing was discussed with many QUT researchers. Our experiences provided rich insight into researcher attitudes towards their data and the sharing of such data. Generally, we found traditional altruistic motivations for research data sharing did not inspire researchers, but an explanation of the more achievement-oriented benefits were more compelling.
Resumo:
The Queensland University of Technology (QUT) in Brisbane, Australia, is involved in a number of projects funded by the Australian National Data Service (ANDS). Currently, QUT is working on a project (Metadata Stores Project) that uses open source VIVO software to aid in the storage and management of metadata relating to data sets created/managed by the QUT research community. The registry (called QUT Research Data Finder) will support the sharing and reuse of research datasets, within and external to QUT. QUT uses VIVO for both the display and the editing of research metadata.
Resumo:
A Maintenance Test Section Survey (MTSS) was conducted as part of a Peer State Review of the Texas Maintenance Program conducted October 5–7, 2010. The purpose of the MTSS was to conduct a field review of 34 highway test sections and obtain participants’ opinions about pavement, roadside, and maintenance conditions. The goal was to cross reference or benchmark TxDOT’s maintenance practices based on practices used by selected peer states. Representatives from six peer states (California, Georgia, Kansas, Missouri, North Carolina, and Washington) were invited to Austin to attend a 3-day Peer State Review of TxDOT Maintenance Practices Workshop and to participate in a field survey of a number of pre-selected one-mile roadway sections. It should be emphasized that the objective of the survey was not to evaluate and grade or score TxDOT’s road network but rather to determine whether the selected roadway sections met acceptable standards of service as perceived by Directors of Maintenance or senior maintenance managers from the peer states...
Resumo:
Server consolidation using virtualization technology has become an important technology to improve the energy efficiency of data centers. Virtual machine placement is the key in the server consolidation. In the past few years, many approaches to the virtual machine placement have been proposed. However, existing virtual machine placement approaches to the virtual machine placement problem consider the energy consumption by physical machines in a data center only, but do not consider the energy consumption in communication network in the data center. However, the energy consumption in the communication network in a data center is not trivial, and therefore should be considered in the virtual machine placement in order to make the data center more energy-efficient. In this paper, we propose a genetic algorithm for a new virtual machine placement problem that considers the energy consumption in both the servers and the communication network in the data center. Experimental results show that the genetic algorithm performs well when tackling test problems of different kinds, and scales up well when the problem size increases.
Resumo:
Neighbourhood like the concept of liveability is usually measured by either subjective indicators using surveys of residents’ perceptions or by objective means using secondary data or relative weights for objective indicators of the urban environment. Rarely, have objective and subjective indicators been related to one another in order to understand what constitutes a liveable urban neighbourhood both spatially and behaviourally. This paper explores the use of qualitative (diaries, in-depth interviews) and quantitative (Global Positioning Systems, Geographical Information Systems mapping) liveability research data to examine the perceptions and behaviour of 12 older residents living in six high density urban areas of Brisbane. Older urban Australians are one of the two principal groups highly attracted to high density urban living. The strength of the relationship between the qualitative and quantitative measures was examined. Results of the research indicate a weak relationship between subjective and objective indicators. Linking the two methods (quantitative and qualitative) is important in obtaining a greater understanding of human behaviour and the lived world of older urban Australians and in providing a wider picture of the urban neighbourhood.
Resumo:
Here we present a sequential Monte Carlo approach to Bayesian sequential design for the incorporation of model uncertainty. The methodology is demonstrated through the development and implementation of two model discrimination utilities; mutual information and total separation, but it can also be applied more generally if one has different experimental aims. A sequential Monte Carlo algorithm is run for each rival model (in parallel), and provides a convenient estimate of the marginal likelihood (of each model) given the data, which can be used for model comparison and in the evaluation of utility functions. A major benefit of this approach is that it requires very little problem specific tuning and is also computationally efficient when compared to full Markov chain Monte Carlo approaches. This research is motivated by applications in drug development and chemical engineering.
Resumo:
Australian higher education institutions (HEIs) have entered a new phase of regulation and accreditation which includes performance-based funding relating to the participation and retention of students from social and cultural groups previously underrepresented in higher education. However, in addressing these priorities, it is critical that HEIs do not further disadvantage students from certain groups by identifying them for attention because of their social or cultural backgrounds, circumstances which are largely beyond the control of students. In response, many HEIs are focusing effort on university-wide approaches to enhancing the student experience because such approaches will enhance the engagement, success and retention of all students, and in doing so, particularly benefit those students who come from underrepresented groups. Measuring and benchmarking student experiences and engagement that arise from these efforts is well supported by extensive collections of student experience survey data. However no comparable instrument exists that measures the capability of institutions to influence and/or enhance student experiences where capability is an indication of how well an organisational process does what it is designed to do (Rosemann & de Bruin, 2005). We have proposed that the concept of a maturity model (Marshall, 2010; Paulk, 1999) may be useful as a way of assessing the capability of HEIs to provide and implement student engagement, success and retention activities and we are currently articulating a Student Engagement, Success and Retention Maturity Model (SESR-MM), (Clarke, Nelson & Stoodley, 2012; Nelson, Clarke & Stoodley, 2012). Our research aims to address the current gap by facilitating the development of an SESR-MM instrument that aims (i) to enable institutions to assess the capability of their current student engagement and retention programs and strategies to influence and respond to student experiences within the institution; and (ii) to provide institutions with the opportunity to understand various practices across the sector with a view to further improving programs and practices relevant to their context. Our research extends the generational approach which has been useful in considering the evolutionary nature of the first year experience (FYE) (Wilson, 2009). Three generations have been identified and explored: First generation approaches that focus on co-curricular strategies (e.g. orientation and peer programs); Second generation approaches that focus on curriculum (e.g. pedagogy, curriculum design, and learning and teaching practice); and third generation approaches—also referred to as transition pedagogy—that focus on the production of an institution-wide integrated holistic intentional blend of curricular and co-curricular activities (Kift, Nelson & Clarke, 2010). Our research also moves beyond assessments of students’ experiences to focus on assessing institutional processes and their capability to influence student engagement. In essence, we propose to develop and use the maturity model concept to produce an instrument that will indicate the capability of HEIs to manage and improve student engagement, success and retention programs and strategies. The issues explored in this workshop are (i) whether the maturity model concept can be usefully applied to provide a measure of institutional capability for SESR; (ii) whether the SESR-MM can be used to assess the maturity of a particular set of institutional practices; and (iii) whether a collective assessment of an institution’s SESR capabilities can provide an indication of the maturity of the institution’s SESR activities. The workshop will be approached in three stages. Firstly, participants will be introduced to the key characteristics of maturity models, followed by a discussion of the SESR-MM and the processes involved in its development. Secondly, participants will be provided with resources to facilitate the development of a maturity model and an assessment instrument for a range of institutional processes and related practices. In the final stage of the workshop, participants will “assess” the capability of these practices to provide a collective assessment of the maturity of these processes. References Australian Council for Educational Research. (n.d.). Australasian Survey of Student Engagement. Retrieved from http://www.acer.edu.au/research/ausse/background Clarke, J., Nelson, K., & Stoodley, I. (2012, July). The Maturity Model concept as framework for assessing the capability of higher education institutions to address student engagement, success and retention: New horizon or false dawn? A Nuts & Bolts presentation at the 15th International Conference on the First Year in Higher Education, “New Horizons,” Brisbane, Australia. Department of Education, Employment and Workplace Relations. (n.d.). The University Experience Survey. Advancing quality in higher education information sheet. Retrieved from http://www.deewr.gov.au/HigherEducation/Policy/Documents/University_Experience_Survey.pdf Kift, S., Nelson, K., & Clarke, J. (2010) Transition pedagogy - a third generation approach to FYE: A case study of policy and practice for the higher education sector. The International Journal of the First Year in Higher Education, 1(1), pp. 1-20. Marshall, S. (2010). A quality framework for continuous improvement of e-Learning: The e-Learning Maturity Model. Journal of Distance Education, 24(1), 143-166. Nelson, K., Clarke, J., & Stoodley, I. (2012). An exploration of the Maturity Model concept as a vehicle for higher education institutions to assess their capability to address student engagement. A work in progress. Submitted for publication. Paulk, M. (1999). Using the Software CMM with good judgment, ASQ Software Quality Professional, 1(3), 19-29. Wilson, K. (2009, June–July). The impact of institutional, programmatic and personal interventions on an effective and sustainable first-year student experience. Keynote address presented at the 12th Pacific Rim First Year in Higher Education Conference, “Preparing for Tomorrow Today: The First Year as Foundation,” Townsville, Australia. Retrieved from http://www.fyhe.com.au/past_papers/papers09/ppts/Keithia_Wilson_paper.pdf
Resumo:
There is still no comprehensive information strategy governing access to and reuse of public sector information, applying on a nationwide basis, across all levels of government – local, state and federal - in Australia. This is the case both for public sector materials generally and for spatial data in particular. Nevertheless, the last five years have seen some significant developments in information policy and practice, the result of which has been a considerable lessening of the barriers that previously acted to impede the accessibility and reusability of a great deal of spatial and other material held by public sector agencies. Much of the impetus for change has come from the spatial community which has for many years been a proponent of the view “that government held information, and in particular spatial information, will play an absolutely critical role in increasing the innovative capacity of this nation.”1 However, the potential of government spatial data to contribute to innovation will remain unfulfilled without reform of policies on access and reuse as well as the pervasive practices of public sector data custodians who have relied on government copyright to justify the imposition of restrictive conditions on its use.