592 resultados para Speed Detection.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Before the age of 75 years, approximately 10% of women will be diagnosed with breast cancer, one of the most common malignancies and a leading cause of death among women. The objective of this study was to determine if expression of the nuclear receptor coactivators 1 and 3 (NCoA1 and NCoA3) varied in breast cancer grades. RNA was extracted from 25 breast tumours and transcribed into cDNA which underwent semi-quantitative polymerase chain reaction, normalised using 18S. Analysis indicated that an expression change for NCoA1 in cancer grades and estrogen receptor alpha negative tissue (P= 0.028 and 0.001 respectively). NCoA1 expression increased in grade 3 and estrogen receptor alpha negative tumours, compared to controls. NCoA3 showed a similar, but not significant, trend in grade and a non-significant decrease in estrogen receptor alpha negative tissues. Expression of NCoA1 in late stage and estrogen receptor alpha negative breast tumours may have implications to breast cancer treatment, particularly in the area of manipulation of hormone signalling systems in advanced tumours.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crashes on motorway contribute to a significant proportion (40-50%) of non-recurrent motorway congestions. Hence reduce crashes will help address congestion issues (Meyer, 2008). Crash likelihood estimation studies commonly focus on traffic conditions in a Short time window around the time of crash while longer-term pre-crash traffic flow trends are neglected. In this paper we will show, through data mining techniques, that a relationship between pre-crash traffic flow patterns and crash occurrence on motorways exists, and that this knowledge has the potential to improve the accuracy of existing models and opens the path for new development approaches. The data for the analysis was extracted from records collected between 2007 and 2009 on the Shibuya and Shinjuku lines of the Tokyo Metropolitan Expressway in Japan. The dataset includes a total of 824 rear-end and sideswipe crashes that have been matched with traffic flow data of one hour prior to the crash using an incident detection algorithm. Traffic flow trends (traffic speed/occupancy time series) revealed that crashes could be clustered with regards of the dominant traffic flow pattern prior to the crash. Using the k-means clustering method allowed the crashes to be clustered based on their flow trends rather than their distance. Four major trends have been found in the clustering results. Based on these findings, crash likelihood estimation algorithms can be fine-tuned based on the monitored traffic flow conditions with a sliding window of 60 minutes to increase accuracy of the results and minimize false alarms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crashes that occur on motorways contribute to a significant proportion (40-50%) of non-recurrent motorway congestions. Hence, reducing the frequency of crashes assists in addressing congestion issues (Meyer, 2008). Crash likelihood estimation studies commonly focus on traffic conditions in a short time window around the time of a crash while longer-term pre-crash traffic flow trends are neglected. In this paper we will show, through data mining techniques that a relationship between pre-crash traffic flow patterns and crash occurrence on motorways exists. We will compare them with normal traffic trends and show this knowledge has the potential to improve the accuracy of existing models and opens the path for new development approaches. The data for the analysis was extracted from records collected between 2007 and 2009 on the Shibuya and Shinjuku lines of the Tokyo Metropolitan Expressway in Japan. The dataset includes a total of 824 rear-end and sideswipe crashes that have been matched with crashes corresponding to traffic flow data using an incident detection algorithm. Traffic trends (traffic speed time series) revealed that crashes can be clustered with regards to the dominant traffic patterns prior to the crash. Using the K-Means clustering method with Euclidean distance function allowed the crashes to be clustered. Then, normal situation data was extracted based on the time distribution of crashes and were clustered to compare with the “high risk” clusters. Five major trends have been found in the clustering results for both high risk and normal conditions. The study discovered traffic regimes had differences in the speed trends. Based on these findings, crash likelihood estimation models can be fine-tuned based on the monitored traffic conditions with a sliding window of 30 minutes to increase accuracy of the results and minimize false alarms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wind power has become one of the popular renewable resources all over the world and is anticipated to occupy 12% of the total global electricity generation capacity by 2020. For the harsh environment that the wind turbine operates, fault diagnostic and condition monitoring are important for wind turbine safety and reliability. This paper employs a systematic literature review to report the most recent promotions in the wind turbine fault diagnostic, from 2005 to 2012. The frequent faults and failures in wind turbines are considered and different techniques which have been used by researchers are introduced, classified and discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The promise of ‘big data’ has generated a significant deal of interest in the development of new approaches to research in the humanities and social sciences, as well as a range of important critical interventions which warn of an unquestioned rush to ‘big data’. Drawing on the experiences made in developing innovative ‘big data’ approaches to social media research, this paper examines some of the repercussions for the scholarly research and publication practices of those researchers who do pursue the path of ‘big data’–centric investigation in their work. As researchers import the tools and methods of highly quantitative, statistical analysis from the ‘hard’ sciences into computational, digital humanities research, must they also subscribe to the language and assumptions underlying such ‘scientificity’? If so, how does this affect the choices made in gathering, processing, analysing, and disseminating the outcomes of digital humanities research? In particular, is there a need to rethink the forms and formats of publishing scholarly work in order to enable the rigorous scrutiny and replicability of research outcomes?

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a polynomial time algorithm is presented for solving the Eden problem for graph cellular automata. The algorithm is based on our neighborhood elimination operation which removes local neighborhood configurations which cannot be used in a pre-image of a given configuration. This paper presents a detailed derivation of our algorithm from first principles, and a detailed complexity and accuracy analysis is also given. In the case of time complexity, it is shown that the average case time complexity of the algorithm is \Theta(n^2), and the best and worst cases are \Omega(n) and O(n^3) respectively. This represents a vast improvement in the upper bound over current methods, without compromising average case performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This project was a step forward in developing intrusion detection systems in distributed environments such as web services. It investigates a new approach of detection based on so-called "taint-marking" techniques and introduces a theoretical framework along with its implementation in the Linux kernel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper elaborates the approach used by the Applied Data Mining Research Group (ADMRG) for the Social Event Detection (SED) Tasks of the 2013 MediaEval Benchmark. We extended the constrained clustering algorithm to apply to the first semi-supervised clustering task, and we compared several classifiers with Latent Dirichlet Allocation as feature selector in the second event classification task. The proposed approach focuses on scalability and efficient memory allocation when applied to a high dimensional data with large clusters. Results of the first task show the effectiveness of the proposed method. Results from task 2 indicate that attention on the imbalance categories distributions is needed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A nanostructured gold surface consisting of closely packed outwardly growing spikes is investigated for the electrochemical detection of dopamine and cytochrome c. A significant electrocatalytic effect for the electrooxidation of both dopamine and ascorbic acid at the nanostructured electrode was found due to the presence of surface active sites which allowed the detection of dopamine in the presence of excess ascorbic acid to be achieved by differential pulse voltammetry. By simple modification with a layer of Nafion, the enhanced electrocatalytic properties of the nanostructured surface was maintained while increasing the selectivity of dopamine detection in the presence of interfering species such as excess ascorbic and uric acids. Also, upon modification of the nanostructured surface with a monolayer of cysteine, the electrochemical response of immobilised cytochrome c in two distinct conformations was observed. This opens up the possibility of using such a nanostructured surface for the characterisation of other biomolecules and in bio-electroanalytical applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stress corrosion cracking (SCC) is a well known form of environmental attack in low carat gold jewellery. It is desirable to have a quick, easy and cost effective way to detect SCC in alloys and prevent them from being used and later failing in their application. A facile chemical method to investigate SCC of 9 carat gold alloys is demonstrated. It involves a simple application of tensile stress to a wire sample in a corrosive environment such as 1–10 % FeCl3 which induces failure in less than 5 minutes. In this study three quaternary (Au, Ag, Cu and Zn) 9 carat gold alloy compositions were investigated for their resistance to SCC and the relationship between time to failure and processing conditions is studied. It is envisaged that the use of such a rapid and facile screening procedure at the production stage may readily identify alloy treatments that produce jewellery that will be susceptible to SCC in its lifetime.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crashes that occur on motorways contribute to a significant proportion (40-50%) of non-recurrent motorway congestion. Hence, reducing the frequency of crashes assist in addressing congestion issues (Meyer, 2008). Analysing traffic conditions and discovering risky traffic trends and patterns are essential basics in crash likelihood estimations studies and still require more attention and investigation. In this paper we will show, through data mining techniques, that there is a relationship between pre-crash traffic flow patterns and crash occurrence on motorways, compare them with normal traffic trends, and that this knowledge has the potentiality to improve the accuracy of existing crash likelihood estimation models, and opens the path for new development approaches. The data for the analysis was extracted from records collected between 2007 and 2009 on the Shibuya and Shinjuku lines of the Tokyo Metropolitan Expressway in Japan. The dataset includes a total of 824 rear-end and sideswipe crashes that have been matched with crashes corresponding traffic flow data using an incident detection algorithm. Traffic trends (traffic speed time series) revealed that crashes can be clustered with regards to the dominant traffic patterns prior to the crash occurrence. K-Means clustering algorithm applied to determine dominant pre-crash traffic patterns. In the first phase of this research, traffic regimes identified by analysing crashes and normal traffic situations using half an hour speed in upstream locations of crashes. Then, the second phase investigated the different combination of speed risk indicators to distinguish crashes from normal traffic situations more precisely. Five major trends have been found in the first phase of this paper for both high risk and normal conditions. The study discovered traffic regimes had differences in the speed trends. Moreover, the second phase explains that spatiotemporal difference of speed is a better risk indicator among different combinations of speed related risk indicators. Based on these findings, crash likelihood estimation models can be fine-tuned to increase accuracy of estimations and minimize false alarms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a new framework for distributed intrusion detection based on taint marking. Our system tracks information flows between applications of multiple hosts gathered in groups (i.e., sets of hosts sharing the same distributed information flow policy) by attaching taint labels to system objects such as files, sockets, Inter Process Communication (IPC) abstractions, and memory mappings. Labels are carried over the network by tainting network packets. A distributed information flow policy is defined for each group at the host level by labeling information and defining how users and applications can legally access, alter or transfer information towards other trusted or untrusted hosts. As opposed to existing approaches, where information is most often represented by two security levels (low/high, public/private, etc.), our model identifies each piece of information within a distributed system, and defines their legal interaction in a fine-grained manner. Hosts store and exchange security labels in a peer to peer fashion, and there is no central monitor. Our IDS is implemented in the Linux kernel as a Linux Security Module (LSM) and runs standard software on commodity hardware with no required modification. The only trusted code is our modified operating system kernel. We finally present a scenario of intrusion in a web service running on multiple hosts, and show how our distributed IDS is able to report security violations at each host level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose. To compare the on-road driving performance of visually impaired drivers using bioptic telescopes with age-matched controls. Methods. Participants included 23 persons (mean age = 33 ± 12 years) with visual acuity of 20/63 to 20/200 who were legally licensed to drive through a state bioptic driving program, and 23 visually normal age-matched controls (mean age = 33 ± 12 years). On-road driving was assessed in an instrumented dual-brake vehicle along 14.6 miles of city, suburban, and controlled-access highways. Two backseat evaluators independently rated driving performance using a standardized scoring system. Vehicle control was assessed through vehicle instrumentation and video recordings used to evaluate head movements, lane-keeping, pedestrian detection, and frequency of bioptic telescope use. Results. Ninety-six percent (22/23) of bioptic drivers and 100% (23/23) of controls were rated as safe to drive by the evaluators. There were no group differences for pedestrian detection, or ratings for scanning, speed, gap judgments, braking, indicator use, or obeying signs/signals. Bioptic drivers received worse ratings than controls for lane position and steering steadiness and had lower rates of correct sign and traffic signal recognition. Bioptic drivers made significantly more right head movements, drove more often over the right-hand lane marking, and exhibited more sudden braking than controls. Conclusions. Drivers with central vision loss who are licensed to drive through a bioptic driving program can display proficient on-road driving skills. This raises questions regarding the validity of denying such drivers a license without the opportunity to train with a bioptic telescope and undergo on-road evaluation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Determining what consequences are likely to serve as effective punishment for any given behaviour is a complex task. This chapter focuses specifically on illegal road user behaviours and the mechanisms used to punish and deter them. Traffic law enforcement has traditionally used the threat and/or receipt of legal sanctions and penalties to deter illegal and risky behaviours. This process represents the use of positive punishment, one of the key behaviour modification mechanisms. Behaviour modification principles describe four types of reinforcers: positive and negative punishments and positive and negative reinforcements. The terms ‘positive’ and ‘negative’ are not used in an evaluative sense here. Rather, they represent the presence (positive) or absence (negative) of stimuli to promote behaviour change. Punishments aim to inhibit behaviour and reinforcements aim to encourage it. This chapter describes a variety of punishments and reinforcements that have been and could be used to modify illegal road user behaviours. In doing so, it draws on several theoretical perspectives that have defined behavioural reinforcement and punishment in different ways. Historically, the main theoretical approach used to deter risky road use has been classical deterrence theory which has focussed on the perceived certainty, severity and swiftness of penalties. Stafford and Warr (1993) extended the traditional deterrence principles to include the positive reinforcement concept of punishment avoidance. Evidence of the association between punishment avoidance experiences and behaviour has been established for a number of risky road user behaviours including drink driving, unlicensed driving, and speeding. We chose a novel way of assessing punishment avoidance by specifying two sub-constructs (detection evasion and punishment evasion). Another theorist, Akers, described the idea of competing reinforcers, termed differential reinforcement, within social learning theory (1977). Differential reinforcement describes a balance of reinforcements and punishments as influential on behaviour. This chapter describes comprehensive way of conceptualising a broad range of reinforcement and punishment concepts, consistent with Akers’ differential reinforcement concept, within a behaviour modification framework that incorporates deterrence principles. The efficacy of three theoretical perspectives to explain self-reported speeding among a sample of 833 Australian car drivers was examined. Results demonstrated that a broad range of variables predicted speeding including personal experiences of evading detection and punishment for speeding, intrinsic sensations, practical benefits expected from speeding, and an absence of punishing effects from being caught. Not surprisingly, being younger was also significantly related to more frequent speeding, although in a regression analysis, gender did not retain a significant influence once all punishment and reinforcement variables were entered. The implications for speed management, as well as road user behaviour modification more generally, are discussed in light of these findings. Overall, the findings reported in this chapter suggest that a more comprehensive approach is required to manage the behaviour of road users which does not rely solely on traditional legal penalties and sanctions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an investigation into event detection in crowded scenes, where the event of interest co-occurs with other activities and only binary labels at the clip level are available. The proposed approach incorporates a fast feature descriptor from the MPEG domain, and a novel multiple instance learning (MIL) algorithm using sparse approximation and random sensing. MPEG motion vectors are used to build particle trajectories that represent the motion of objects in uniform video clips, and the MPEG DCT coefficients are used to compute a foreground map to remove background particles. Trajectories are transformed into the Fourier domain, and the Fourier representations are quantized into visual words using the K-Means algorithm. The proposed MIL algorithm models the scene as a linear combination of independent events, where each event is a distribution of visual words. Experimental results show that the proposed approaches achieve promising results for event detection compared to the state-of-the-art.