363 resultados para Motion recognition
Resumo:
"In Perpetual Motion is an "historical choreography" of power, pedagogy, and the child from the 1600s to the early 1900s. It breaks new ground by historicizing the analytics of power and motion that have interpenetrated renditions of the young. Through a detailed examination of the works of John Locke, Jean-Jacques Rousseau, Johann Herbart, and G. Stanley Hall, this book maps the discursive shifts through which the child was given a unique nature, inscribed in relation to reason, imbued with an effectible interiority, and subjected to theories of power and motion. The book illustrates how developmentalist visions took hold in U.S. public school debates. It documents how particular theories of power became submerged and taken for granted as essences inside the human subject. In Perpetual Motion studiously challenges views of power as in or of the gaze, tracing how different analytics of power have been used to theorize what gazing could notice."--BOOK JACKET.
Resumo:
The undesirable effects of roll motion of ships (rocking about the longitudinal axis) became noticeable in the mid-nineteenth century when significant changes were introduced to the design of ships as a result of sails being replaced by steam engines and the arrangement being changed from broad to narrow hulls. The combination of these changes led to lower transverse stability (lower restoring moment for a given angle of roll) with the consequence of larger roll motion. The increase in roll motion and its effect on cargo and human performance lead to the development several control devices that aimed at reducing and controlling roll motion. The control devices most commonly used today are fin stabilizers, rudder, anti-roll tanks, and gyrostabilizers. The use of different types of actuators for control of ship roll motion has been amply demonstrated for over 100 years. Performance, however, can still fall short of expectations because of difficulties associated with control system design, which have proven to be far from trivial due to fundamental performance limitations and large variations of the spectral characteristics of wave-induced roll motion. This short article provides an overview of the fundamentals of control design for ship roll motion reduction. The overview is limited to the most common control devices.
Resumo:
This paper presents a motion control system for tracking of attitude and speed of an underactuated slender-hull unmanned underwater vehicle. The feedback control strategy is developed using the Port-Hamiltonian theory. By shaping of the target dynamics (desired dynamic response in closed loop) with particular attention to the target mass matrix, the influence of the unactuated dynamics on the controlled system is suppressed. This results in achievable dynamics independent of stable uncontrolled states. Throughout the design, the insight of the physical phenomena involved is used to propose the desired target dynamics. Integral action is added to the system for robustness and to reject steady disturbances. This is achieved via a change of coordinates that result in input-to-state stable (ISS) target dynamics. As a final step in the design, an anti-windup scheme is implemented to account for limited actuator capacity, namely saturation. The performance of the design is demonstrated through simulation with a high-fidelity model.
Resumo:
Ship seakeeping operability refers to the quantification of motion performance in waves relative to mission requirements. This is used to make decisions about preferred vessel designs, but it can also be used as comprehensive assessment of the benefits of ship-motion-control systems. Traditionally, operability computation aggregates statistics of motion computed over over the envelope of likely environmental conditions in order to determine a coefficient in the range from 0 to 1 called operability. When used for assessment of motion-control systems, the increase of operability is taken as the key performance indicator. The operability coefficient is often given the interpretation of the percentage of time operable. This paper considers an alternative probabilistic approach to this traditional computation of operability. It characterises operability not as a number to which a frequency interpretation is attached, but as a hypothesis that a vessel will attain the desired performance in one mission considering the envelope of likely operational conditions. This enables the use of Bayesian theory to compute the probability of that this hypothesis is true conditional on data from simulations. Thus, the metric considered is the probability of operability. This formulation not only adheres to recent developments in reliability and risk analysis, but also allows incorporating into the analysis more accurate descriptions of ship-motion-control systems since the analysis is not limited to linear ship responses in the frequency domain. The paper also discusses an extension of the approach to the case of assessment of increased levels of autonomy for unmanned marine craft.
Resumo:
Deep convolutional network models have dominated recent work in human action recognition as well as image classification. However, these methods are often unduly influenced by the image background, learning and exploiting the presence of cues in typical computer vision datasets. For unbiased robotics applications, the degree of variation and novelty in action backgrounds is far greater than in computer vision datasets. To address this challenge, we propose an “action region proposal” method that, informed by optical flow, extracts image regions likely to contain actions for input into the network both during training and testing. In a range of experiments, we demonstrate that manually segmenting the background is not enough; but through active action region proposals during training and testing, state-of-the-art or better performance can be achieved on individual spatial and temporal video components. Finally, we show by focusing attention through action region proposals, we can further improve upon the existing state-of-the-art in spatio-temporally fused action recognition performance.
Resumo:
The constitutional recognition campaign has received party-wide support and its efforts have been promoted by Prime Minister Tony Abbott as being something that would ‘complete our Constitution.’ The broader rhetoric surrounding this campaign suggests that it will result in a just, albeit delayed, recognition of indigenous peoples in the Australian legal system. However, beneath the surface of this seemingly benevolent gesture, is a reaffirmation of the colonial subordination and erasure of the several hundred original nations’ peoples and ways of being.
Resumo:
Introduction Markerless motion capture systems are relatively new devices that can significantly speed up capturing full body motion. A precision of the assessment of the finger’s position with this type of equipment was evaluated at 17.30 ± 9.56 mm when compare to an active marker system [1]. The Microsoft Kinect was proposed to standardized and enhanced clinical evaluation of patients with hemiplegic cerebral palsy [2]. Markerless motion capture systems have the potential to be used in a clinical setting for movement analysis, as well as for large cohort research. However, the precision of such system needs to be characterized. Global objectives • To assess the precision within the recording field of the markerless motion capture system Openstage 2 (Organic Motion, NY). • To compare the markerless motion capture system with an optoelectric motion capture system with active markers. Specific objectives • To assess the noise of a static body at 13 different location within the recording field of the markerless motion capture system. • To assess the smallest oscillation detected by the markerless motion capture system. • To assess the difference between both systems regarding the body joint angle measurement. Methods Equipment • OpenStage® 2 (Organic Motion, NY) o Markerless motion capture system o 16 video cameras (acquisition rate : 60Hz) o Recording zone : 4m * 5m * 2.4m (depth * width * height) o Provide position and angle of 23 different body segments • VisualeyezTM VZ4000 (PhoeniX Technologies Incorporated, BC) o Optoelectric motion capture system with active markers o 4 trackers system (total of 12 cameras) o Accuracy : 0.5~0.7mm Protocol & Analysis • Static noise: o Motion recording of an humanoid mannequin was done in 13 different locations o RMSE was calculated for each segment in each location • Smallest oscillation detected: o Small oscillations were induced to the humanoid mannequin and motion was recorded until it stopped. o Correlation between the displacement of the head recorded by both systems was measured. A corresponding magnitude was also measured. • Body joints angle: o Body motion was recorded simultaneously with both systems (left side only). o 6 participants (3 females; 32.7 ± 9.4 years old) • Tasks: Walk, Squat, Shoulder flexion & abduction, Elbow flexion, Wrist extension, Pronation / supination (not in results), Head flexion & rotation (not in results), Leg rotation (not in results), Trunk rotation (not in results) o Several body joint angles were measured with both systems. o RMSE was calculated between signals of both systems. Results Conclusion Results show that the Organic Motion markerless system has the potential to be used for assessment of clinical motor symptoms or motor performances However, the following points should be considered: • Precision of the Openstage system varied within the recording field. • Precision is not constant between limb segments. • The error seems to be higher close to the range of motion extremities.
Resumo:
Red blood cells (RBCs) are the most common type of blood cells in the blood and 99% of the blood cells are RBCs. During the circulation of blood in the cardiovascular network, RBCs squeeze through the tiny blood vessels (capillaries). They exhibit various types of motions and deformed shapes, when flowing through these capillaries with diameters varying between 5 10 µm. RBCs occupy about 45 % of the whole blood volume and the interaction between the RBCs directly influences on the motion and the deformation of the RBCs. However, most of the previous numerical studies have explored the motion and deformation of a single RBC when the interaction between RBCs has been neglected. In this study, motion and deformation of two 2D (two-dimensional) RBCs in capillaries are comprehensively explored using a coupled smoothed particle hydrodynamics (SPH) and discrete element method (DEM) model. In order to clearly model the interactions between RBCs, only two RBCs are considered in this study even though blood with RBCs is continuously flowing through the blood vessels. A spring network based on the DEM is employed to model the viscoelastic membrane of the RBC while the inside and outside fluid of RBC is modelled by SPH. The effect of the initial distance between two RBCs, membrane bending stiffness (Kb) of one RBC and undeformed diameter of one RBC on the motion and deformation of both RBCs in a uniform capillary is studied. Finally, the deformation behavior of two RBCs in a stenosed capillary is also examined. Simulation results reveal that the interaction between RBCs has significant influence on their motion and deformation.
Resumo:
This Article analyzes the recognition and enforcement of cross-border insolvency judgments from the United States, United Kingdom, and Australia to determine whether the UNCITRAL Model Law’s goal of modified universalism is currently being practiced, and subjects the Model Law to analysis through the lens of international relations theories to elaborate a way forward. We posit that courts could use the express language of the Model Law text to confer recognition and enforcement of foreign insolvency judgments. The adoption of our proposal will reduce costs, maximize recovery for creditors, and ensure predictability for all parties.
Resumo:
This paper introduces a machine learning based system for controlling a robotic manipulator with visual perception only. The capability to autonomously learn robot controllers solely from raw-pixel images and without any prior knowledge of configuration is shown for the first time. We build upon the success of recent deep reinforcement learning and develop a system for learning target reaching with a three-joint robot manipulator using external visual observation. A Deep Q Network (DQN) was demonstrated to perform target reaching after training in simulation. Transferring the network to real hardware and real observation in a naive approach failed, but experiments show that the network works when replacing camera images with synthetic images.
Resumo:
This talk gives an overview of the project "Uncanny Nature", which incoporates a style of animation called Hybrid Stop Motion, that combines physical object armatures with virtual copies. The development of the production pipeline (using a mix of Blender, Dragonframe, Photoscan and Arduino) is discussed, as well as the way that Blender was used throughout the production to visualise, model, animate and composite the elements together.
Resumo:
This paper presents an effective classification method based on Support Vector Machines (SVM) in the context of activity recognition. Local features that capture both spatial and temporal information in activity videos have made significant progress recently. Efficient and effective features, feature representation and classification plays a crucial role in activity recognition. For classification, SVMs are popularly used because of their simplicity and efficiency; however the common multi-class SVM approaches applied suffer from limitations including having easily confused classes and been computationally inefficient. We propose using a binary tree SVM to address the shortcomings of multi-class SVMs in activity recognition. We proposed constructing a binary tree using Gaussian Mixture Models (GMM), where activities are repeatedly allocated to subnodes until every new created node contains only one activity. Then, for each internal node a separate SVM is learned to classify activities, which significantly reduces the training time and increases the speed of testing compared to popular the `one-against-the-rest' multi-class SVM classifier. Experiments carried out on the challenging and complex Hollywood dataset demonstrates comparable performance over the baseline bag-of-features method.
Resumo:
In this paper we investigate the effectiveness of class specific sparse codes in the context of discriminative action classification. The bag-of-words representation is widely used in activity recognition to encode features, and although it yields state-of-the art performance with several feature descriptors it still suffers from large quantization errors and reduces the overall performance. Recently proposed sparse representation methods have been shown to effectively represent features as a linear combination of an over complete dictionary by minimizing the reconstruction error. In contrast to most of the sparse representation methods which focus on Sparse-Reconstruction based Classification (SRC), this paper focuses on a discriminative classification using a SVM by constructing class-specific sparse codes for motion and appearance separately. Experimental results demonstrates that separate motion and appearance specific sparse coefficients provide the most effective and discriminative representation for each class compared to a single class-specific sparse coefficients.
Resumo:
This paper presents an effective feature representation method in the context of activity recognition. Efficient and effective feature representation plays a crucial role not only in activity recognition, but also in a wide range of applications such as motion analysis, tracking, 3D scene understanding etc. In the context of activity recognition, local features are increasingly popular for representing videos because of their simplicity and efficiency. While they achieve state-of-the-art performance with low computational requirements, their performance is still limited for real world applications due to a lack of contextual information and models not being tailored to specific activities. We propose a new activity representation framework to address the shortcomings of the popular, but simple bag-of-words approach. In our framework, first multiple instance SVM (mi-SVM) is used to identify positive features for each action category and the k-means algorithm is used to generate a codebook. Then locality-constrained linear coding is used to encode the features into the generated codebook, followed by spatio-temporal pyramid pooling to convey the spatio-temporal statistics. Finally, an SVM is used to classify the videos. Experiments carried out on two popular datasets with varying complexity demonstrate significant performance improvement over the base-line bag-of-feature method.
Resumo:
Head motion (HM) is a well known confound in analyses of functional MRI (fMRI) data. Neuroimaging researchers therefore typically treat HM as a nuisance covariate in their analyses. Even so, it is possible that HM shares a common genetic influence with the trait of interest. Here we investigate the extent to which this relationship is due to shared genetic factors, using HM extracted from resting-state fMRI and maternal and self report measures of Inattention and Hyperactivity-Impulsivity from the Strengths and Weaknesses of ADHD Symptoms and Normal Behaviour (SWAN) scales. Our sample consisted of healthy young adult twins (N = 627 (63% females) including 95 MZ and 144 DZ twin pairs, mean age 22, who had mother-reported SWAN; N = 725 (58% females) including 101 MZ and 156 DZ pairs, mean age 25, with self reported SWAN). This design enabled us to distinguish genetic from environmental factors in the association between head movement and ADHD scales. HM was moderately correlated with maternal reports of Inattention (r = 0.17, p-value = 7.4E-5) and Hyperactivity-Impulsivity (r = 0.16, p-value = 2.9E-4), and these associations were mainly due to pleiotropic genetic factors with genetic correlations [95% CIs] of rg = 0.24 [0.02, 0.43] and rg = 0.23 [0.07, 0.39]. Correlations between self-reports and HM were not significant, due largely to increased measurement error. These results indicate that treating HM as a nuisance covariate in neuroimaging studies of ADHD will likely reduce power to detect between-group effects, as the implicit assumption of independence between HM and Inattention or Hyperactivity-Impulsivity is not warranted. The implications of this finding are problematic for fMRI studies of ADHD, as failing to apply HM correction is known to increase the likelihood of false positives. We discuss two ways to circumvent this problem: censoring the motion contaminated frames of the RS-fMRI scan or explicitly modeling the relationship between HM and Inattention or Hyperactivity-Impulsivity