664 resultados para 2-MANIFOLDS
Resumo:
A randomized controlled trial evaluated the effectiveness of a 4-wk extended theory of planned behavior (TPB) intervention to promote regular physical activity and healthy eating among older adults diagnosed with Type 2 diabetes or cardiovascular disease (N = 183). Participants completed TPB measures of attitude, subjective norm, perceived behavioral control, and intention, as well as planning and behavior, at preintervention and 1 wk and 6 wk postintervention for each behavior. No significant time-by-condition effects emerged for healthy eating. For physical activity, significant time-by-condition effects were found for behavior, intention, planning, perceived behavioral control, and subjective norm. In particular, compared with control participants, the intervention group showed short-term improvements in physical activity and planning, with further analyses indicating that the effect of the intervention on behavior was mediated by planning. The results indicate that TPB-based interventions including planning strategies may encourage physical activity among older people with diabetes and cardiovascular disease.
Resumo:
In a study aimed at better understanding how students adapt to new blended studio learning environments, all undergraduate and masters of architecture students at a large school of architecture in Australia, learned a semester of architectural design in newly renovated, technology embedded, design studio environments. The renovations addressed the lessons learned from a 2011 pilot study of a second year architectural design studio learned in a high technology embedded prototype digital laboratory. The new design studios were purpose designed for the architecture students and adapted Student-Centred Active Learning Environment for Undergraduate Programs design principles. At the end of the semester, the students completed a questionnaire about their experiences of learning in the new design studio environments. Using a dual method qualitative approach, the questionnaire data were coded and extrapolated using both thematic analysis and grounded theory methodology. The results from these two approaches were compared, contrasted and finally merged, to reveal five distinct emerging themes, which were instrumental in offering resistance or influencing adaptation to, the new blended studio learning environments. This paper reports on the study, discusses the major contributors to resistance and adaptation, and proposes points for consideration when renovating or designing new blended studio learning environments. This research extends the 2011 pilot study by the same authors: ‘Dichotomy in the design studio: Adapting to new blended learning environments’.
Resumo:
In this article, we analyze the three-component reaction-diffusion system originally developed by Schenk et al. (PRL 78:3781–3784, 1997). The system consists of bistable activator-inhibitor equations with an additional inhibitor that diffuses more rapidly than the standard inhibitor (or recovery variable). It has been used by several authors as a prototype three-component system that generates rich pulse dynamics and interactions, and this richness is the main motivation for the analysis we present. We demonstrate the existence of stationary one-pulse and two-pulse solutions, and travelling one-pulse solutions, on the real line, and we determine the parameter regimes in which they exist. Also, for one-pulse solutions, we analyze various bifurcations, including the saddle-node bifurcation in which they are created, as well as the bifurcation from a stationary to a travelling pulse, which we show can be either subcritical or supercritical. For two-pulse solutions, we show that the third component is essential, since the reduced bistable two-component system does not support them. We also analyze the saddle-node bifurcation in which two-pulse solutions are created. The analytical method used to construct all of these pulse solutions is geometric singular perturbation theory, which allows us to show that these solutions lie in the transverse intersections of invariant manifolds in the phase space of the associated six-dimensional travelling wave system. Finally, as we illustrate with numerical simulations, these solutions form the backbone of the rich pulse dynamics this system exhibits, including pulse replication, pulse annihilation, breathing pulses, and pulse scattering, among others.
Resumo:
Motorcycle trauma is a serious road safety issue in Queensland and throughout Australia. In 2009, Queensland Transport (later Transport and Main Roads or TMR) appointed CARRS-Q to provide a three-year program of Road Safety Research Services for Motorcycle Rider Safety. Funding for this research originated from the Motor Accident Insurance Commission. This program of research was undertaken to produce knowledge to assist TMR to improve motorcycle safety by further strengthening the licensing and training system to make learner riders safer by developing a pre-learner package (Deliverable 1), and by evaluating the Q-Ride CAP program to ensure that it is maximally effective and contributes to the best possible training for new riders (Deliverable 2), which is the focus of this report. Deliverable 3 of the program identified potential new licensing components that will reduce the incidence of risky riding and improve higher-order cognitive skills in new riders. This report provides a summary of Deliverables 2.1 through to 2.4.
Resumo:
In the structure of the title complex, [Cs(C6H2Cl3N2O2)(H2O)]n, the caesium salt of the commercial herbicide picloram, the Cs+ cation lies on a crystallographic mirror plane, which also contains the coordinating water molecule and all non-H atoms of the 4-amino-3,5,6-trichloropicolinate anion except the carboxylate O-atom donors. The irregular CsCl4O5 coordination polyhedron comprises chlorine donors from the ortho-related ring substituents of the picloramate ligand in a bidentate chelate mode, with a third chlorine bridging [Cs-Cl range 3.6052 (11)-3.7151 (11) Å] as well as a bidentate chelate carboxylate group giving sheets extending parallel to (010). A three-dimensional coordination polymer structure is generated through the carboxylate group, which also bridges the sheets down [010]. Within the structure, there are intra-unit water O-HOcarboxylate and amine N-HNpyridine hydrogen-bonding interactions.
Resumo:
In the asymmetric unit of the title co-crystal, C12H14N4O2S·C7H5NO4, the sulfamethazine and 2-nitrobenzoic acid molecules form a heterodimer through intermolecular amide-carboxylic acid N-HO and carboxylic acid-pyrimidine O-HN hydrogen-bond pairs, giving a cyclic motif [graph set R22(8)]. The dihedral angle between the two aromatic ring systems in the sulfamethazine molecule is 88.96 (18)° and the nitro group of the acid is 50% rotationally disordered. Secondary aniline N-HOsulfone hydrogen-bonding associations give a two-dimensional structure lying parallel to the ab plane.
Resumo:
We reviewed the effect of behavioural telehealth interventions on glycaemic control and diabetes self-management in patients with type 2 diabetes. The databases CINAHL, Medline and psychINFO were searched in August 2012. Journal articles were selected that had been published in English with a randomized controlled trial design using a usual care comparison group, and in which the primary intervention component was delivered by telehealth. Relevant outcome measures were glycaemic control and one or more of the following diabetes self-care areas: diet, physical activity, blood glucose self-monitoring (BGSM) or medication adherence. Interventions were excluded if they were primarily based on telemonitoring. The search retrieved 1027 articles, from which 49 were selected based on their title and abstract. Fourteen articles (reporting 13 studies) met the eligibility criteria for inclusion. Four studies reported significant improvements in glycaemic control. Five of eight studies on dietary adherence reported significant treatment effects, as did five of eight on physical activity, four of nine on blood glucose self-monitoring, and three of eight on medication adherence. Overall, behavioural telehealth interventions show promise in improving the diabetes self-care and glycaemic control of people with type 2 diabetes.
Resumo:
Twenty first century learners operate in organic, immersive environments. A pedagogy of student-centred learning is not a recipe for rooms. A contemporary learning environment is like a landscape that grows, morphs, and responds to the pressures of the context and micro-culture. There is no single adaptable solution, nor a suite of off-the-shelf answers; propositions must be customisable and infinitely variable. They must be indeterminate and changeable; based on the creation of learning places, not restrictive or constraining spaces. A sustainable solution will be un-fixed, responsive to the life cycle of the components and materials, able to be manipulated by the users; it will create and construct its own history. Learning occurs as formal education with situational knowledge structures, but also as informal learning, active learning, blended learning social learning, incidental learning, and unintended learning. These are not spatial concepts but socio-cultural patterns of discovery. Individual learning requirements must run free and need to be accommodated as the learner sees fit. The spatial solution must accommodate and enable a full array of learning situations. It is a system not an object. Three major components: 1. The determinate landscape: in-situ concrete 'plate' that is permanent. It predates the other components of the system and remains as a remnant/imprint/fossil after the other components of the system have been relocated. It is a functional learning landscape in its own right; enabling a variety of experiences and activities. 2. The indeterminate landscape: a kit of pre-fabricated 2-D panels assembled in a unique manner at each site to suit the client and context. Manufactured to the principles of design-for-disassembly. A symbiotic barnacle like system that attaches itself to the existing infrastructure through the determinate landscape which acts as a fast growth rhizome. A carapace of protective panels, infinitely variable to create enclosed, semi-enclosed, and open learning places. 3. The stations: pre-fabricated packages of highly-serviced space connected through the determinate landscape. Four main types of stations; wet-room learning centres, dry-room learning centres, ablutions, and low-impact building services. Entirely customised at the factory and delivered to site. The stations can be retro-fitted to suit a new context during relocation. Principles of design for disassembly: material principles • use recycled and recyclable materials • minimise the number of types of materials • no toxic materials • use lightweight materials • avoid secondary finishes • provide identification of material types component principles • minimise/standardise the number of types of components • use mechanical not chemical connections • design for use of common tools and equipment • provide easy access to all components • make component size to suite means of handling • provide built in means of handling • design to realistic tolerances • use a minimum number of connectors and a minimum number of types system principles • design for durability and repeated use • use prefabrication and mass production • provide spare components on site • sustain all assembly and material information
Resumo:
Modelling video sequences by subspaces has recently shown promise for recognising human actions. Subspaces are able to accommodate the effects of various image variations and can capture the dynamic properties of actions. Subspaces form a non-Euclidean and curved Riemannian manifold known as a Grassmann manifold. Inference on manifold spaces usually is achieved by embedding the manifolds in higher dimensional Euclidean spaces. In this paper, we instead propose to embed the Grassmann manifolds into reproducing kernel Hilbert spaces and then tackle the problem of discriminant analysis on such manifolds. To achieve efficient machinery, we propose graph-based local discriminant analysis that utilises within-class and between-class similarity graphs to characterise intra-class compactness and inter-class separability, respectively. Experiments on KTH, UCF Sports, and Ballet datasets show that the proposed approach obtains marked improvements in discrimination accuracy in comparison to several state-of-the-art methods, such as the kernel version of affine hull image-set distance, tensor canonical correlation analysis, spatial-temporal words and hierarchy of discriminative space-time neighbourhood features.
Resumo:
Adolescent idiopathic scoliosis is a complex three dimensional deformity affecting 2-3% of the general population. The resulting spinal deformity consists of coronal curvature, hypokyphosis of the thoracic spine and vertebral rotation in the axial plane with posterior elements turned into the curve concavity. The potential for curve progression is heightened during the adolescent growth spurt. Success of scoliosis deformity correction depends on solid bony fusion between adjacent vertebrae after the intervertebral (IV) discs have been surgically cleared and the disc spaces filled with graft material. Recently a bioactive and resorbable scaffold fabricated from medical grade polycaprolactone has been developed for bone regeneration at load bearing sites. Combined with rhBMP-2, this has been shown to be successful in acting as a bone graft substitute in a porcine lumbar interbody fusion model when compared to autologous bone graft alone. The study aimed to establish a large animal thoracic spine interbody fusion model, develop spine biodegradable scaffolds (PCL) in combination with biologics (rhBMP-2) and to establish a platform for research into spine tissue engineering constructs. Preliminary results demonstrate higher grades of radiologically evident bony fusion across all levels when comparing fusion scores between the 3 and 6 month postop groups at the PCL CaP coated scaffold level, which is observed to be a similar grade to autograft, while no fusion is seen at the scaffold only level. Results to date suggest that the combination of rhBMP-2 and scaffold engineering actively promotes bone formation, laying the basis of a viable tissue engineered constructs.
Resumo:
Adolescent idiopathic scoliosis is a complex three dimensional deformity affecting 2-3% of the general population. Resulting spine deformities include progressive coronal curvature, hypokyphosis, or frank lordosis in the thoracic spine and vertebral rotation in the axial plane with posterior elements turned into the curve concavity. The potential for curve progression is heightened during the adolescent growth spurt. Success of scoliosis deformity correction depends on solid bony fusion between adjacent vertebrae after the intervertebral discs have been surgically cleared and the disc spaces filled with graft material. Problems with bone graft harvest site morbidity as well as limited bone availability have led to the search for bone graft substitutes. Recently, a bioactive and resorbable scaffold fabricated from medical grade polycaprolactone (PCL) has been developed for bone regeneration at load bearing sites. Combined with recombinant human bone morphogenic protein–2 (rhBMP-2), this has been shown to be successful in acting as a bone graft substitute in acting as a bone graft substitute in a porcine lumbar interbody fusion model when compared to autologous bone graft. This in vivo sheep study intends to evaluate the suitability of a custom designed medical grade PCL scaffold in combination with rhBMP-2 as a bone graft substitute in the setting of mini–thoracotomy surgery as a platform for ongoing research to benefit patients with adolescent idiopathic scoliosis.
Resumo:
This article focuses on problem solving activities in a first grade classroom in a typical small community and school in Indiana. But, the teacher and the activities in this class were not at all typical of what goes on in most comparable classrooms; and, the issues that will be addressed are relevant and important for students from kindergarten through college. Can children really solve problems that involve concepts (or skills) that they have not yet been taught? Can children really create important mathematical concepts on their own – without a lot of guidance from teachers? What is the relationship between problem solving abilities and the mastery of skills that are widely regarded as being “prerequisites” to such tasks?Can primary school children (whose toolkits of skills are limited) engage productively in authentic simulations of “real life” problem solving situations? Can three-person teams of primary school children really work together collaboratively, and remain intensely engaged, on problem solving activities that require more than an hour to complete? Are the kinds of learning and problem solving experiences that are recommended (for example) in the USA’s Common Core State Curriculum Standards really representative of the kind that even young children encounter beyond school in the 21st century? … This article offers an existence proof showing why our answers to these questions are: Yes. Yes. Yes. Yes. Yes. Yes. And: No. … Even though the evidence we present is only intended to demonstrate what’s possible, not what’s likely to occur under any circumstances, there is no reason to expect that the things that our children accomplished could not be accomplished by average ability children in other schools and classrooms.
Resumo:
Partnerships between universities and public institutions such as this offer the beginning of a long term relationship to actively influence public policy, procedures and new ways to engage the many diverse communities to be integral in shaping the environments in which they live. It offers an opportunity to apply authentic positioning of research theories and build new methodologies for consulting, analysing and implementing innovation. SBC, as an established corporation offers a unique precinct to research and develop models with its different offers of tourism, leisure and neighbourhood. The Parklands and Little Stanley Street are well advanced in the goals however Grey Street, which connects the precinct to the greater surrounds, has been a complex issue that is now ready to be addressed. This project offers the ability to be of real worth at this critical time of development with the history of the past development combined with the desire for future visioning to be realised over the next 5 years. QUT has the unique opportunity to be part of this future.
Resumo:
This report presents the top-line findings of the Australian Screen Producer survey conducted in December 2011. The report was prepared by Bergent Research and commissioned by the ARC Centre of Excellence for Creative Industries and Innovation (CCI), Queensland University of Technology, with assistance from the Centre for Screen Business, Australian Film Television and Radio School (AFTRS). The 2011 producer survey was a national study of the demographics, motivations, sentiments and activities of screen producers across four industry segments: Film, Television, Commercial and Digital Media. This survey is the second Australian Screen Producer survey and builds upon research undertaken in the Australian Screen Content Producer Survey conducted in 2009. The 2011 study is referred to in this report as Wave 2 and the 2009 study is referred to as Wave 1.
Resumo:
Detailed investigation of an intermediate member of the reddingite–phosphoferrite series, using infrared and Raman spectroscopy, scanning electron microcopy and electron microprobe analysis, has been carried out on a homogeneous sample from a lithium-bearing pegmatite named Cigana mine, near Conselheiro Pena, Minas Gerais, Brazil. The determined formula is (Mn1.60Fe1.21Ca0.01Mg0.01)∑2.83(PO4)2.12⋅(H2O2.85F0.01)∑2.86 indicating predominance in the reddingite member. Raman spectroscopy coupled with infrared spectroscopy supports the concept of phosphate, hydrogen phosphate and dihydrogen phosphate units in the structure of reddingite-phosphoferrite. Infrared and Raman bands attributed to water and hydroxyl stretching modes are identified. Vibrational spectroscopy adds useful information to the molecular structure of reddingite–phosphoferrite.