496 resultados para multiple measurements
Resumo:
Multiple-time signatures are digital signature schemes where the signer is able to sign a predetermined number of messages. They are interesting cryptographic primitives because they allow to solve many important cryptographic problems, and at the same time offer substantial efficiency advantage over ordinary digital signature schemes like RSA. Multiple-time signature schemes have found numerous applications, in ordinary, on-line/off-line, forward-secure signatures, and multicast/stream authentication. We propose a multiple-time signature scheme with very efficient signing and verifying. Our construction is based on a combination of one-way functions and cover-free families, and it is secure against the adaptive chosen-message attack.
Resumo:
A new wave energy flow (WEF) map concept was proposed in this work. Based on it, an improved technique incorporating the laser scanning method and Betti’s reciprocal theorem was developed to evaluate the shape and size of damage as well as to realize visualization of wave propagation. In this technique, a simple signal processing algorithm was proposed to construct the WEF map when waves propagate through an inspection region, and multiple lead zirconate titanate (PZT) sensors were employed to improve inspection reliability. Various damages in aluminum and carbon fiber reinforced plastic laminated plates were experimentally and numerically evaluated to validate this technique. The results show that it can effectively evaluate the shape and size of damage from wave field variations around the damage in the WEF map.
Resumo:
Radiative and total heat transfer at the flow stagnation point of a 1:40.8 binary scaled model of the Titan Explorer vehicle were measured in the X3 expansion tube. Results from the current study illustrated that with the addition of CH4 into a N2 test gas radiative heat transfer could be detected. For a test gas of 5% CH4 and 95% N2, simulating an atmospheric model for Titanic aerocapture, approximately 4% of the experimentally measured total stagnation point heat transfer was found to be due to radiation. This was in comparison to < 1% measured for a test gas of pure nitrogen. When scaled to the flight vehicle, experimental results indicate a 64% contribution of radiation (test gas 5% CH4/95% N2). Previous numerical results however have predicted this contribution to be between 80-92%. Thus, experimental results from the current study suggest that numerical analyses are over-predicting the radiative heat transfer on the flight vehicle.
Resumo:
The present study focused on simulating a trajectory point towards the end of the first experimental heatshield of the FIRE II vehicle, at a total flight time of 1639.53s. Scale replicas were sized according to binary scaling and instrumented with thermocouples for testing in the X1 expansion tube, located at The University of Queensland. Correlation of flight to experimental data was achieved through the separation, and independent treatment of the heat modes. Preliminary investigation indicates that the absolute value of radiant surface flux is conserved between two binary scaled models, whereas convective heat transfer increases with the length scale. This difference in the scaling techniques result in the overall contribution of radiative heat transfer diminishing to less than 1% in expansion tubes from a flight value of approximately 9-17%. From empirical correlation's it has been shown that the St √Re number decreases, under special circumstances, in expansion tubes by the percentage radiation present on the flight vehicle. Results obtained in this study give a strong indication that the relative radiative heat transfer contribution in the expansion tube tests is less than that in flight, supporting the analysis that the absolute value remains constant with binary scaling.
Resumo:
A multi-secret sharing scheme allows several secrets to be shared amongst a group of participants. In 2005, Shao and Cao developed a verifiable multi-secret sharing scheme where each participant’s share can be used several times which reduces the number of interactions between the dealer and the group members. In addition some secrets may require a higher security level than others involving the need for different threshold values. Recently Chan and Chang designed such a scheme but their construction only allows a single secret to be shared per threshold value. In this article we combine the previous two approaches to design a multiple time verifiable multi-secret sharing scheme where several secrets can be shared for each threshold value. Since the running time is an important factor for practical applications, we will provide a complexity comparison of our combined approach with respect to the previous schemes.
Resumo:
A pulsed impinging jet is used to simulate the gust front of a thunderstorm downburst. This work concentrates on investigating the peak transient loading conditions on a 30 mm cubic model submerged in the simulated downburst flow. The outflow induced pressures are recorded and compared to those from boundary layer and steady wall jet flow. Given that peak winds associated with downburst events are often located in the transient frontal region, the importance of using a non-stationary modelling technique for assessing peak downburst wind loads is highlighted with comparisons.
Resumo:
Much interest surrounds the effect of extracellular matrix (ECM) elasticity on cell behavior. Here we present a rapid method for measuring the elasticity of synthetic ECM substrates based on indentation of the substrate with a ferromagnetic sphere and optical tracking of the resulting deformation. We find that this method yields order-of-magnitude agreement with atomic force microscopy elasticity measurements, but that the degree of this agreement depends strongly on sphere density and gel elasticity. In its regime of greatest accuracy, we envision that this method may be used for high-throughput characterization of ECM substrates in cell biological studies.
Resumo:
The interest in utilising multiple heterogeneous Unmanned Aerial Vehicles (UAVs) in close proximity is growing rapidly. As such, many challenges are presented in the effective coordination and management of these UAVs; converting the current n-to-1 paradigm (n operators operating a single UAV) to the 1-to-n paradigm (one operator managing n UAVs). This paper introduces an Information Abstraction methodology used to produce the functional capability framework initially proposed by Chen et al. and its Level Of Detail (LOD) indexing scale. This framework was validated through comparing the operator workload and Situation Awareness (SA) of three experiment scenarios involving multiple autonomously heterogeneous UAVs. The first scenario was set in a high LOD configuration with highly abstracted UAV functional information; the second scenario was set in a mixed LOD configuration; and the final scenario was set in a low LOD configuration with maximal UAV functional information. Results show that there is a significant statistical decrease in operator workload when a UAV’s functional information is displayed at its physical form (low LOD - maximal information) when comparing to the mixed LOD configuration.
Resumo:
Ground-penetrating radar (GPR) is widely used for assessment of soil moisture variability in field soils. Because GPR does not measure soil water content directly, it is common practice to use calibration functions that describe its relationship with the soil dielectric properties and textural parameters. However, the large variety of models complicates the selection of the appropriate function. In this article an overview is presented of the different functions available, including volumetric models, empirical functions, effective medium theories, and frequency-specific functions. Using detailed information presented in summary tables, the choice for which calibration function to use can be guided by the soil variables available to the user, the frequency of the GPR equipment, and the desired level of detail of the output. This article can thus serve as a guide for GPR practitioners to obtain soil moisture values and to estimate soil dielectric properties.
Resumo:
Background Despite the commonality of cough and its burden, there are no published data on the relationship between atopy or sex on objectively measured cough frequency or subjective cough scores in children. In 202 children with and without cough, we determined the effect of sex and atopy on validated cough outcome measurements (cough receptor sensitivity [CRS], objective cough counts, and cough scores). We hypothesized that in contrast to adult data, sex does not influence cough outcome measures, and atopy is not a determinant of these cough measurements. Methods We combined data from four previous studies. Atopy (skin prick test), the concentration of capsaicin causing two and five or more coughs (C2 and C5, respectively), objectively measured cough frequency, and cough scores were determined and their relationship explored. The children’s (93 girls, 109 boys) mean age was 10.6 years (SD 2.9), and 56% had atopy. Results In multivariate analysis, CRS was influenced by age (C2 coefficient, 5.9; P = .034; C5 coefficient, 29.1; P = .0001). Atopy and sex did not significantly influence any of the cough outcomes (cough counts, C2, C5, cough score) in control subjects and children with cough. Conclusions Atopy does not influence important cough outcome measures in children with and without chronic cough. However, age, but not sex, influences CRS in children. Unlike adult data, sex does not affect objective counts or cough score in children with and without chronic cough. Studies on cough in children should be age matched, but matching for atopic status and sex is less important.
Resumo:
Introduction Due to their high spatial resolution diodes are often used for small field relative output factor measurements. However, a field size specific correction factor [1] is required and corrects for diode detector over-response at small field sizes. A recent Monte Carlo based study has shown that it is possible to design a diode detector that produces measured relative output factors that are equivalent to those in water. This is accomplished by introducing an air gap at the upstream end of the diode [2]. The aim of this study was to physically construct this diode by placing an ‘air cap’ on the end of a commercially available diode (the PTW 60016 electron diode). The output factors subsequently measured with the new diode design were compared to current benchmark small field output factor measurements. Methods A water-tight ‘cap’ was constructed so that it could be placed over the upstream end of the diode. The cap was able to be offset from the end of the diode, thus creating an air gap. The air gap width was the same as the diode width (7 mm) and the thickness of the air gap could be varied. Output factor measurements were made using square field sizes of side length from 5 to 50 mm, using a 6 MV photon beam. The set of output factor measurements were repeated with the air gap thickness set to 0, 0.5, 1.0 and 1.5 mm. The optimal air gap thickness was found in a similar manner to that proposed by Charles et al. [2]. An IBA stereotactic field diode, corrected using Monte Carlo calculated kq,clin,kq,msr values [3] was used as the gold standard. Results The optimal air thickness required for the PTW 60016 electron diode was 1.0 mm. This was close to the Monte Carlo predicted value of 1.15 mm2. The sensitivity of the new diode design was independent of field size (kq,clin,kq,msr = 1.000 at all field sizes) to within 1 %. Discussion and conclusions The work of Charles et al. [2] has been proven experimentally. An existing commercial diode has been converted into a correction-less small field diode by the simple addition of an ‘air cap’. The method of applying a cap to create the new diode leads to the diode being dual purpose, as without the cap it is still an unmodified electron diode.
Resumo:
Mutations in the genes encoding for either the biosynthetic or transcriptional regulation of the anthocyanin pathway have been linked to color phenotypes. Generally, this is a loss of function resulting in a reduction or a change in the distribution of anthocyanin. Here, we describe a rearrangement in the upstream regulatory region of the gene encoding an apple (Malus x domestica) anthocyanin-regulating transcription factor, MYB10. We show that this modification is responsible for increasing the level of anthocyanin throughout the plant to produce a striking phenotype that includes red foliage and red fruit flesh. This rearrangement is a series of multiple repeats, forming a minisatellite-like structure that comprises five direct tandem repeats of a 23-bp sequence. This MYB10 rearrangement is present in all the red foliage apple varieties and species tested but in none of the white fleshed varieties. Transient assays demonstrated that the 23-bp sequence motif is a target of the MYB10 protein itself, and the number of repeat units correlates with an increase in transactivation by MYB10 protein. We show that the repeat motif is capable of binding MYB10 protein in electrophoretic mobility shift assays. Taken together, these results indicate that an allelic rearrangement in the promoter of MYB10 has generated an autoregulatory locus, and this autoregulation is sufficient to account for the increase in MYB10 transcript levels and subsequent ectopic accumulation of anthocyanins throughout the plant.
Resumo:
This paper presents a novel framework to further advance the recent trend of using query decomposition and high-order term relationships in query language modeling, which takes into account terms implicitly associated with different subsets of query terms. Existing approaches, most remarkably the language model based on the Information Flow method are however unable to capture multiple levels of associations and also suffer from a high computational overhead. In this paper, we propose to compute association rules from pseudo feedback documents that are segmented into variable length chunks via multiple sliding windows of different sizes. Extensive experiments have been conducted on various TREC collections and our approach significantly outperforms a baseline Query Likelihood language model, the Relevance Model and the Information Flow model.