495 resultados para hyperpolarisierte Gase, He-3, MRT, Lunge, Applikator
Resumo:
The human galectin-3 is a galactoside-binding protein of 31 kDa which functions as a receptor for glycoproteins containing poly N-acetyllactosamine side chains and as a substrate for matrix metalloproteinases-2 and -9. We studied its expression by flow cytofluorimetry, Western, Northern and Southern analyses, in five cultured human breast carcinoma cell lines previously characterized as non-tumorigenic, poorly metastatic or metastatic in nude mice. The expression of galectin-3 correlated with the reported tumorigenicity of the cells. The introduction of recombinant galectin-3 into the null expressing non-tumorigenic BT-549 cells resulted in the acquisition of anchorage-independent growth properties in alland tumorigenicity in 3/4 sense transfected cell crones. The data indicate a relationship between galectin-3 expression and malignancy of human breast carcinoma cell lines.
Resumo:
OBJECTIVE To compare the physical activity levels of overweight and non overweight 3- to 5-y-old children while attending preschool. A secondary aim was to evaluate weight-related differences in hypothesized parental determinants of child physical activity behavior. DESIGN Cross-sectional study. SUBJECTS A total of 245, 3- to 5-y-olds (127 girls, 118 boys) and their parent(s) (242 mothers, 173 fathers) recruited from nine preschools. Overweight status determined using the age- and sex-specific 85th percentile for body mass index (BMI) from CDC Growth Charts. MEASUREMENTS Physical activity during the preschool day was assessed on multiple days via two independent objective measures direct observation using the observation system for recording activity in preschools (OSRAP) and real-time accelerometry using the MTI/CSA 7164 accelerometer. Parents completed a take-home survey assessing sociodemographic information, parental height and weight, modeling of physical activity, support for physical activity, active toys and sporting equipment at home, child’s television watching, frequency of park visitation, and perceptions of child competence. RESULTS Overweight boys were significantly less active than their nonoverweight peers during the preschool day. No significant differences were observed in girls. Despite a strong association between childhood overweight status and parental obesity, no significant differences were observed for the hypothesized parental influences on physical activity behavior. CONCLUSIONS Our results suggest that a significant proportion of overweight children may be at increased risk for further gains in adiposity because of low levels of physical activity during the preschool day.
Resumo:
The influence of αVβ3 integrin on MT1-MMP functionality was studied in human breast cancer cells of differing β3 integrin status. Overexpression of β3 integrin caused increased cell surface expression of αV integrin and increased cellular adhesion to extracellular matrix (ECM) substrates in BT-549, MDA-MB-231 and MCF-7 cells. β3 integrin expression also enhanced the migration of breast cancer cells on ECM substrates and enhanced collagen gel contraction. In vivo, αVβ3 cooperated with MT1-MMP to increase the growth of MCF-7 cells after orthotopic inoculation in immunocompromised mice, but had no influence on in vitro proliferation. Despite these stimulatory effects, overexpression of β3 integrin suppressed the type I collagen (Col I) induced MMP-2 activation in all breast cancer cell lines analyzed. This was also evident in extracts from the MCF-7 tumors in vivo, where MMP-2 activation was stimulated by MT1-MMP transfection, but attenuated with β3 integrin expression. Although our studies confirm important biological effects of αVβ3 integrin on enhancing cell adhesion and migration, ECM remodeling and tumor growth, β3 integrin caused reduced MMP-2 activation in response to Col I in vitro, which appears to be physiologically relevant, as it was also seen in tumor xenografts in vivo. The reduction of MMP-2 activation (and thus MT1-MMP activity) by αVβ3 in response to Col I may be important in scenarios where cells which are activated for matrix degradation need to preserve some pericellular collagen, perhaps as a substrate for cell adhesion and migration, thus maintaining a balanced level of proteolysis required for efficient tumor growth.
Resumo:
The role of vascularization in 3-D tissue engineering was studied. Mouse fat, angiogenic growth factors, adult human stem cells and fat tissue have been inserted and subsequent tissue growth was monitored. Human fat grafts or human lipoaspirates in SCID mouse chambers induced mouse fat generation at 6 weeks. Tissue engineering models utilizing intrinsic vascularization have major advantages including rapid and appropriate vascularization of new tissues.
Resumo:
In January 2011, Brisbane, Australia, experienced a major river flooding event. We aimed to investigate its effects on air quality and assess the role of prompt cleaning activities in reducing the airborne exposure risk. A comprehensive, multi-parameter indoor and outdoor measurement campaign was conducted in 41 residential houses, 2 and 6 months after the flood. The median indoor air concentrations of supermicrometer particle number (PN), PM10, fungi and bacteria 2 months after the flood were comparable to those previously measured in Brisbane. These were 2.88 p cm-3, 15 µg m-3, 804 cfu m-3 and 177 cfu m-3 for flood-affected houses (AFH), and 2.74 p cm-3, 15 µg m-3, 547 cfu m-3 and 167 cfu m-3 for non-affected houses (NFH), respectively. The I/O (indoor/outdoor) ratios of these pollutants were 1.08, 1.38, 0.74 and 1.76 for AFH and 1.03, 1.32, 0.83 and 2.17 for NFH, respectively. The average of total elements (together with transition metals) in indoor dust was 2296 ± 1328 µg m-2 for AFH and 1454 ± 678 µg m-2 for NFH, respectively. In general, the differences between AFH and NFH were not statistically significant, implying the absence of a measureable effect on air quality from the flood. We postulate that this was due to the very swift and effective cleaning of the flooded houses by 60,000 volunteers. Among the various cleaning methods, the use of both detergent and bleach was the most efficient at controlling indoor bacteria. All cleaning methods were equally effective for indoor fungi. This study provides quantitative evidence of the significant impact of immediate post-flood cleaning on mitigating the effects of flooding on indoor bioaerosol contamination and other pollutants.
Resumo:
The aim of this work was to investigate changes in particle number concentration (PNC) within naturally ventilated primary school classrooms arising from local sources either within or adjacent to the classrooms. We quantify the rate at which ultrafine particles were emitted either from printing, grilling, heating or cleaning activities and the rate at which the particles were removed by both deposition and air exchange processes. At each of 25 schools in Brisbane, Australia, two weeks of measurements of PNC and CO2 were taken both outdoors and in the two classrooms. Bayesian regression modelling was employed in order to estimate the relevant rates and analyse the relationship between air exchange rate (AER), particle infiltration and the deposition rates of particle generated from indoor activities in the classrooms. During schooling hours, grilling events at the school tuckshop as well as heating and printing in the classrooms led to indoor PNCs being elevated by a factor of more than four, with emission rates of (2.51 ± 0.25) x 1011 p min-1, (8.99 ± 6.70) x 1011 p min-1 and (5.17 ± 2.00) x 1011 p min-1, respectively. During non-school hours, cleaning events elevated indoor PNC by a factor of above five, with an average emission rate of (2.09 ± 6.30) x 1011 p min-1. Particles were removed by both air exchange and deposition; chiefly by ventilation when AER > 0.7 h-1 and by deposition when AER < 0.7 h-1.
Resumo:
We prove that homogeneous bent functions f:GF(2)^2n --> GF(2) of degree n do not exist for n>3. Consequently homogeneous bent functions must have degree
Resumo:
This review focuses on one of the fundamental phenomena that occur upon application of sufficiently strong electric fields to gases, namely the formation and propagation of ionization waves-streamers. The dynamics of streamers is controlled by strongly nonlinear coupling, in localized streamer tip regions, between enhanced (due to charge separation) electric field and ionization and transport of charged species in the enhanced field. Streamers appear in nature (as initial stages of sparks and lightning, as huge structures-sprites above thunderclouds), and are also found in numerous technological applications of electrical discharges. Here we discuss the fundamental physics of the guided streamer-like structures-plasma bullets which are produced in cold atmospheric-pressure plasma jets. Plasma bullets are guided ionization waves moving in a thin column of a jet of plasma forming gases (e.g.,He or Ar) expanding into ambient air. In contrast to streamers in a free (unbounded) space that propagate in a stochastic manner and often branch, guided ionization waves are repetitive and highly-reproducible and propagate along the same path-the jet axis. This property of guided streamers, in comparison with streamers in a free space, enables many advanced time-resolved experimental studies of ionization waves with nanosecond precision. In particular, experimental studies on manipulation of streamers by external electric fields and streamer interactions are critically examined. This review also introduces the basic theories and recent advances on the experimental and computational studies of guided streamers, in particular related to the propagation dynamics of ionization waves and the various parameters of relevance to plasma streamers. This knowledge is very useful to optimize the efficacy of applications of plasma streamer discharges in various fields ranging from health care and medicine to materials science and nanotechnology.
Resumo:
Effects of surrounding gases on the propagation of room-temperature atmospheric-pressure plasma jets are reported. A highly unusual feather-like plasma plume is observed only when N2 is used as surrounding gas. The He concentration on the axis at the starting point of the feather-like plume is ∼0.85 of the maximum value and is independent on the He flow rates. High-speed optical imaging reveals that dim diffuse plasmas emerge just behind the bright head of the plasma bullet at the starting point of the feather-like plume. These results help tailoring surface exposure in emerging applications of plasma jets in medicine and nanotechnology.
Resumo:
Tailoring the density of random single-walled carbon nanotube (SWCNT) networks is of paramount importance for various applications, yet it remains a major challenge due to the insufficient catalyst activation in most growth processes. Here we report on a simple and effective method to maximise the number of active catalyst nanoparticles using catalytic chemical vapor deposition (CCVD). By modulating short pulses of acetylene into a methane-based CCVD growth process, the density of SWCNTs is dramatically increased by up to three orders of magnitude without increasing the catalyst density and degrading the nanotube quality. In the framework of a vapor-liquid-solid model, we attribute the enhanced growth to the high dissociation rate of acetylene at high temperatures at the nucleation stage, which can be effective in both supersaturating the larger catalyst nanoparticles and overcoming the nanotube nucleation energy barrier of the smaller catalyst nanoparticles. These results are highly relevant to numerous applications of random SWCNT networks in next-generation energy, sensing and biomedical devices. © 2011 The Royal Society of Chemistry.
Resumo:
Structural stability, electronic, and optical properties of InN under high pressure are studied using the first-principles calculations. The lattice constants and electronic band structure are found consistent with the available experimental and theoretical values. The pressure of the wurtzite-to-rocksalt structural transition is 13.4 GPa, which is in an excellent agreement with the most recent experimental values. The optical characteristics reproduce the experimental data thus justifying the feasibility of our theoretical predictions of the optical properties of InN at high pressures.
Resumo:
Highly effective (more than 99.9%) inactivation of a pathogenic fungus Candida albicans commonly found in oral, respiratory, digestive, and reproduction systems of a human body using atmospheric-pressure plasma jets sustained in He+ O2 gas mixtures is reported. The inactivation is demonstrated in two fungal culture configurations with open (Petri dish without a cover) and restricted access to the atmosphere (Petri dish with a cover) under specific experimental conditions. It is shown that the fungal inactivation is remarkably more effective in the second configuration. This observation is supported by the scanning and transmission electron microscopy of the fungi before and after the plasma treatment. The inactivation mechanism explains the experimental observations under different experimental conditions and is consistent with the reports by other authors. The results are promising for the development of advanced health care applications.
Resumo:
An in situ X-ray diffraction investigation of goethite-seeded Al(OH)3 precipitation from synthetic Bayer liquor at 343 K has been performed. The presence of iron oxides and oxyhydroxides in the Bayer process has implications for alumina reversion, which causes significant process losses through unwanted gibbsite precipitation, and is also relevant for the nucleation and growth of scale on mild steel process equipment. The gibbsite, bayerite and nordstrandite polymorphs of Al(OH)3 precipitated from the liquor; gibbsite appeared to precipitate first, with subsequent formation of bayerite and nordstrandite. A Rietveld-based approach to quantitative phase analysis was implemented for the determination of absolute phase abundances as a function of time, from which kinetic information for the formation of the Al(OH)3 phases was determined.
Resumo:
Filling the need for a single work specifically addressing how to use plasma for the fabrication of nanoscale structures, this book is the first to cover plasma deposition in sufficient depth. The author has worked with numerous R&D institutions around the world, and here he begins with an introductory overview of plasma processing at micro- and nanoscales, as well as the current problems and challenges, before going on to address surface preparation, generation and diagnostics, transport and the manipulation of nano units.
Resumo:
The effects of various discharge parameters and ambient gas on the length of He atmospheric plasma jet plumes expanding into the open air are studied. It is found that the voltage and width of the discharge-sustaining pulses exert significantly stronger effects on the plume length than the pulse frequency, gas flow rate, and nozzle diameter. This result is explained through detailed analysis of the I-V characteristics of the primary and secondary discharges which reveals the major role of the integrated total charges of the primary discharge in the plasma dynamics. The length of the jet plume can be significantly increased by guiding the propagating plume into a glass tube attached to the nozzle. This increase is attributed to elimination of the diffusion of surrounding air into the plasma plume, an absence which facilitates the propagation of the ionization front. These results are important for establishing a good level of understanding of the expansion dynamics and for enabling a high degree of control of atmospheric pressure plasmas in biomedical, materials synthesis and processing, environmental and other existing and emerging industrial applications. © 2009 American Institute of Physics.