Homogeneous bent functions of degree n in 2n variables do not exist for n>3
Data(s) |
2004
|
---|---|
Resumo |
We prove that homogeneous bent functions f:GF(2)^2n --> GF(2) of degree n do not exist for n>3. Consequently homogeneous bent functions must have degree <n for n>3. |
Identificador | |
Publicador |
Elsevier |
Relação |
DOI:10.1016/j.dam.2004.02.006 Xia, Tianbing, Seberry, Jennifer, Pieprzyk, Josef, & Charnes, Chris (2004) Homogeneous bent functions of degree n in 2n variables do not exist for n>3. Discrete Applied Mathematics, 142(1-3), pp. 127-132. |
Fonte |
Science & Engineering Faculty |
Palavras-Chave | #Bent; Homogeneous; Difference sets |
Tipo |
Journal Article |