Homogeneous bent functions of degree n in 2n variables do not exist for n>3


Autoria(s): Xia, Tianbing; Seberry, Jennifer; Pieprzyk, Josef; Charnes, Chris
Data(s)

2004

Resumo

We prove that homogeneous bent functions f:GF(2)^2n --> GF(2) of degree n do not exist for n>3. Consequently homogeneous bent functions must have degree <n for n>3.

Identificador

http://eprints.qut.edu.au/73457/

Publicador

Elsevier

Relação

DOI:10.1016/j.dam.2004.02.006

Xia, Tianbing, Seberry, Jennifer, Pieprzyk, Josef, & Charnes, Chris (2004) Homogeneous bent functions of degree n in 2n variables do not exist for n>3. Discrete Applied Mathematics, 142(1-3), pp. 127-132.

Fonte

Science & Engineering Faculty

Palavras-Chave #Bent; Homogeneous; Difference sets
Tipo

Journal Article