593 resultados para design research
Resumo:
The effective daylighting of multistorey commercial building interiors poses an interesting problem for designers in Australia’s tropical and subtropical context. Given that a building exterior receives adequate sun and skylight as dictated by location-specific factors such as weather, siting and external obstructions; then the availability of daylight throughout its interior is dependant on certain building characteristics: the distance from a window façade (room depth), ceiling or window head height, window size and the visible transmittance of daylighting apertures. The daylighting of general stock, multistorey commercial buildings is made difficult by their design limitations with respect to some of these characteristics. The admission of daylight to these interiors is usually exclusively by vertical windows. Using conventional glazing, such windows can only admit sun and skylight to a depth of approximately 2 times the window height. This penetration depth is typically much less than the depth of the office interiors, so that core areas of these buildings receive little or no daylight. This issue is particularly relevant where deep, open plan office layouts prevail. The resulting interior daylight pattern is a relatively narrow perimeter zone bathed in (sometimes too intense) light, contrasted with a poorly daylit core zone. The broad luminance range this may present to a building occupant’s visual field can be a source of discomfort glare. Furthermore, the need in most tropical and subtropical regions to restrict solar heat gains to building interiors for much of the year has resulted in the widespread use of heavily tinted or reflective glazing on commercial building façades. This strategy reduces the amount of solar radiation admitted to the interior, thereby decreasing daylight levels proportionately throughout. However this technique does little to improve the way light is distributed throughout the office space. Where clear skies dominate weather conditions, at different times of day or year direct sunlight may pass unobstructed through vertical windows causing disability or discomfort glare for building occupants and as such, its admission to an interior must be appropriately controlled. Any daylighting system to be applied to multistorey commercial buildings must consider these design obstacles, and attempt to improve the distribution of daylight throughout these deep, sidelit office spaces without causing glare conditions. The research described in this thesis delineates first the design optimisation and then the actual prototyping and manufacture process of a daylighting device to be applied to such multistorey buildings in tropical and subtropical environments.
Resumo:
This paper discusses the effects of thyristor controlled series compensator (TCSC), a series FACTS controller, on the transient stability of a power system. Trajectory sensitivity analysis (TSA) has been used to measure the transient stability condition of the system. The TCSC is modeled by a variable capacitor, the value of which changes with the firing angle. It is shown that TSA can be used in the design of the controller. The optimal locations of the TCSC-controller for different fault conditions can also be identified with the help of TSA. The paper depicts the advantage of the use of TCSC with a suitable controller over fixed capacitor operation.
Resumo:
One major gap in transportation system safety management is the ability to assess the safety ramifications of design changes for both new road projects and modifications to existing roads. To fulfill this need, FHWA and its many partners are developing a safety forecasting tool, the Interactive Highway Safety Design Model (IHSDM). The tool will be used by roadway design engineers, safety analysts, and planners throughout the United States. As such, the statistical models embedded in IHSDM will need to be able to forecast safety impacts under a wide range of roadway configurations and environmental conditions for a wide range of driver populations and will need to be able to capture elements of driving risk across states. One of the IHSDM algorithms developed by FHWA and its contractors is for forecasting accidents on rural road segments and rural intersections. The methodological approach is to use predictive models for specific base conditions, with traffic volume information as the sole explanatory variable for crashes, and then to apply regional or state calibration factors and accident modification factors (AMFs) to estimate the impact on accidents of geometric characteristics that differ from the base model conditions. In the majority of past approaches, AMFs are derived from parameter estimates associated with the explanatory variables. A recent study for FHWA used a multistate database to examine in detail the use of the algorithm with the base model-AMF approach and explored alternative base model forms as well as the use of full models that included nontraffic-related variables and other approaches to estimate AMFs. That research effort is reported. The results support the IHSDM methodology.
Resumo:
Construction sector application of Lead Indicators generally and Positive Performance Indicators (PPIs) particularly, are largely seen by the sector as not providing generalizable indicators of safety effectiveness. Similarly, safety culture is often cited as an essential factor in improving safety performance, yet there is no known reliable way of measuring safety culture. This paper proposes that the accurate measurement of safety effectiveness and safety culture is a requirement for assessing safe behaviours, safety knowledge, effective communication and safety performance. Currently there are no standard national or international safety effectiveness indicators (SEIs) that are accepted by the construction industry. The challenge is that quantitative survey instruments developed for measuring safety culture and/ or safety climate are inherently flawed methodologically and do not produce reliable and representative data concerning attitudes to safety. Measures that combine quantitative and qualitative components are needed to provide a clear utility for safety effectiveness indicators.
Resumo:
Value Management (VM) has been proven to provide a structured framework, together with other supporting tools and techniques, that facilitate effective decision-making in many types of projects, thus achieving ‘best value’ for clients. One of the major success factors of VM in achieving better project objectives for clients is through the provision of beneficial input by multi-disciplinary team members being involved in critical decision-making discussions during the early stage of construction projects. This paper describes a doctoral research proposal based on the application of VM in design and build construction projects, especially focusing on the design stage. The research aims to study the effects of implementing VM in design and build construction projects, in particular how well the methodology addresses issues related to cost overruns resulting from poor coordination and overlooking of critical constructability issues amongst team members in construction projects in Malaysia. It is proposed that through contractors’ early involvement during the design stage, combined with the use of the VM methodology, particularly as a decision-making tool, better optimization of construction cost can be achieved, thus promoting more efficient and effective constructability. The main methods used in this research involve a thorough literature study, semi-structured interviews, and a survey of major stakeholders, a detailed case study and a VM workshop and focus group discussions involving construction professionals in order to explore and possibly develop a framework and a specific methodology for the facilitating successful application of VM within design and build construction projects.
Resumo:
This paper presents a critical review of past research in the work-related driving field in light vehicle fleets (e.g., vehicles < 4.5 tonnes) and an intervention framework that provides future direction for practitioners and researchers. Although work-related driving crashes have become the most common cause of death, injury, and absence from work in Australia and overseas, very limited research has progressed in establishing effective strategies to improve safety outcomes. In particular, the majority of past research has been data-driven, and therefore, limited attention has been given to theoretical development in establishing the behavioural mechanism underlying driving behaviour. As such, this paper argues that to move forward in the field of work-related driving safety, practitioners and researchers need to gain a better understanding of the individual and organisational factors influencing safety through adopting relevant theoretical frameworks, which in turn will inform the development of specifically targeted theory-driven interventions. This paper presents an intervention framework that is based on relevant theoretical frameworks and sound methodological design, incorporating interventions that can be directed at the appropriate level, individual and driving target group.
Resumo:
Background This research addresses the development of a digital stethoscope for use with a telehealth communications network to allow doctors to examine patients remotely (a digital telehealth stethoscope). A telehealth stethoscope would allow remote auscultation of patients who do not live near a major hospital. Travelling from remote areas to major hospitals is expensive for patients and a telehealth stethoscope could result in significant cost savings. Using a stethoscope requires great skill. To design a telehealth stethoscope that meets doctors’ expectations, the use of existing stethoscopes in clinical contexts must be examined. Method Observations were conducted of 30 anaesthetic preadmission consultations. The observations were video- taped. Interaction between doctor, patient and non-human elements in the consultation were “coded” to transform the video into data. The data were analysed to reveal essential aspects of the interactions. Results The analysis has shown that the doctor controls the interaction during auscultation. The conduct of auscultation draws heavily on the doctor’s tacit knowledge, allowing the doctor to treat the acoustic stethoscope as infrastructure – that is, the stethoscope sinks into the background and becomes completely transparent in use. Conclusion Two important, and related, implications for the design of a telehealth stethoscope have arisen from this research. First, as a telehealth stethoscope will be a shared device, doctors will not be able to make use of their existing expertise in using their own stethoscopes. Very simply, a telehealth stethoscope will sound different to a doctor’s own stethoscope. Second, the collaborative interaction required to use a telehealth stethoscope will have to be invented and refined. A telehealth stethoscope will need to be carefully designed to address these issues and result in successful use. This research challenges the concept of a telehealth stethoscope by raising questions about the ease and confidence with which doctors could use such a device.
Resumo:
With an increasing level of collaboration amongst researchers, software developers and industry practitioners in the past three decades, building information modelling (BIM) is now recognized as an emerging technological and procedural shift within the architect, engineering and construction (AEC) industry. BIM is not only considered as a way to make a profound impact on the professions of AEC, but is also regarded as an approach to assist the industry to develop new ways of thinking and practice. Despite the widespread development and recognition of BIM, a succinct and systematic review of the existing BIM research and achievement is scarce. It is also necessary to take stock on existing applications and have a fresh look at where BIM should be heading and how it can benefit from the advances being made. This paper first presents a review of BIM research and achievement in AEC industry. A number of suggestions are then made for future research in BIM. This paper maintains that the value of BIM during design and construction phases is well documented over the last decade, and new research needs to expand the level of development and analysis from design/build stage to postconstruction and facility asset management. New research in BIM could also move beyond the traditional building type to managing the broader range of facilities and built assets and providing preventative maintenance schedules for sustainable and intelligent buildings
Resumo:
This paper presents the simulation model development of passenger flow in a metro station. The model allows studies of passenger flow in stations with different layouts and facilities, thus providing valuable information, such as passenger flow and density of passenger at critical locations and passenger-handling facilities within a station, to the operators. The adoption of the concept of Petri nets in the simulation model is discussed. Examples are provided to demonstrate its application to passenger flow analysis, train scheduling and the testing of alternative station layouts.
Resumo:
Our paper, “HCI & Sustainable Food Culture: A Design Framework for Engagement,” presented at the 2010 NordiCHI conference, introduced a design framework for understanding engagement between people and sustainable food cultures (Choi and Blevis, 2010). Our goal for this chapter “Advancing Design for Sustainable Food Cultures” is to expand our notion of this design framework and the programme of research it implies. This chapter presents the three elements of design framework for sustainability: (i) engagement across disciplines; (ii) engagement with and amongst users/non-users and; (iii) engagement for sustained usability. The uses a corresponding sample of photographic records of experiences that reflect three key issues in the current sustainable food domain: respectively, (i) context of food cultures, (ii) farmers’ markets, and (iii) producing food.
Resumo:
Organisations face increasing competition from new firms in emerging markets and their past superior products may no longer provide competitive advantage in markets based on different cost and value differentials. A shift in design practices from product solutions to health services which are accessible and affordable by all is required. This paper explores a design led approach to innovation to assist medical device companies develop new services and experiences and reshape their notions of the nature, development and deployment of health care services. This approach uses design tools and methodologies that are grounded in the authentic understandings of stakeholder experiences, to assist an organisation create a vision of likely future health care scenarios. Through this process, organisations can explore the complexities in the delivery of future health care services in new and emerging markets allowing them to tailor product and service solutions which focus on being accessible and affordable by all. The industry based case study for the design of health services in carried out in emerging economies. The contribution of this work in advancing research into design innovation and future research directions are also presented.
Resumo:
For some time we have jokingly referred to our network jamming research with jam2jam as ‘Switched on Orff’ (Brown, Sorensen and Dillon 2002; Dillon 2003; Dillon 2006; Dillon 2006; Brown and Dillon 2007). The connection with electronic music and Wendy Carlos’ classic work ‘Switched on Bach’ was obvious; we were using electronic music in schools and with children. The deeper connection with Orff however was about recognising that electronic music and instruments could have cultural values and knowledge embedded in their design and practice in same way as what has come to be known as the Orff method (Orff and Keetman 1958-66). However whilst the Orff method focuses upon Western art music perceptual framework electronic instruments have the potential to have more fluid musical environments and even to move to interdisciplinary study by including visual media. Whilst the Orff method focused on making sense of Western art music through experience electronic environments potentially can make sense of the world of multi media that pervades our lives.
Resumo:
The power to influence others in ever-expanding social networks in the new knowledge economy is tied to capabilities with digital media production that require increased technological knowledge. This article draws on research in elementary classrooms to examine the repertoires of cross-disciplinary knowledge that literacy learners need to produce innovative digital media via the “social web”. The article builds on Learning by Design and the Knowledge Processes to describe “how” learning occurs, while presenting a model to theorise “what” students know – the Knowledge Assets – when learners produce digital and multimodal texts.