397 resultados para Predictive Monitoring
Resumo:
Bats are an important component of mammalian biodiversity and fill such a wide array of ecological niches that they may offer an important multisensory bioindicator role in assessing ecosystem health. There is a need to monitor population trends of bats for their own sake because many populations face numerous environmental threats related to climate change, habitat loss, fragmentation, hunting, and emerging diseases. To be able to establish bat ultrasonic biodiversity trends as a reliable indicator, it is important to standardize monitoring protocols, data management, and analyses. This chapter discusses the main issues to be considered in developing a bat ultrasonic indicator. It focuses on the results from indicator bats program (iBats), a system for the global acoustic monitoring of bats, in Eastern Europe. Finally, the chapter reviews the strengths and weaknesses of the Program and considers the opportunities and threats that it may face in the future.
Resumo:
In this paper we present research adapting a state of the art condition-invariant robotic place recognition algorithm to the role of automated inter- and intra-image alignment of sensor observations of environmental and skin change over time. The approach involves inverting the typical criteria placed upon navigation algorithms in robotics; we exploit rather than attempt to fix the limited camera viewpoint invariance of such algorithms, showing that approximate viewpoint repetition is realistic in a wide range of environments and medical applications. We demonstrate the algorithms automatically aligning challenging visual data from a range of real-world applications: ecological monitoring of environmental change, aerial observation of natural disasters including flooding, tsunamis and bushfires and tracking wound recovery and sun damage over time and present a prototype active guidance system for enforcing viewpoint repetition. We hope to provide an interesting case study for how traditional research criteria in robotics can be inverted to provide useful outcomes in applied situations.
Resumo:
A system for monitoring conditions in a remote environment. The system comprising a data transmission network including a plurality of data sensing nodes. Each data sensing node includes an environment sensing means for periodically sensing the environment around node, a transmission means for periodic wireless transmission of sensed data to adjacent data sensing nodes. These adjacent data sensing nodes combining their sensed data with the received data from other data sensing nodes and on transmit the combined data.
Resumo:
Experimental work could be conducted in either laboratory or at field site. Generally, the laboratory experiments are carried out in an artificial setting and with a highly controlled environment. By contrast, the field experiments often take place in a natural setting, subject to the influences of many uncontrolled factors. Therefore, it is necessary to carefully assess the possible limitations and appropriateness of an experiment before embarking on it. In this paper, a case study of field monitoring of the energy performance of air conditioners is presented. Significant challenges facing the experimental work are described. Lessons learnt from this case study are also discussed. In particular, it was found that on-going analysis of the monitoring data and the correction of abnormal issues are two of the keys for a successful field test program. It was also shown that the installation of monitoring systems could have a significant impact on the accuracy of the data being collected. Before monitoring system was set up to collect monitoring data, it is recommended that an initial analysis of sample monitored data should be conducted to make sure that the monitoring data can achieve the expected precision. In the case where inevitable inherent errors were induced from the installation of field monitoring systems, appropriate remediation may need to be developed and implemented for the improved accuracy of the estimation of results. On-going analysis of monitoring data and correction of any abnormal issues would be the key to a successful field test program.
Resumo:
One of the main challenges facing online and offline path planners is the uncertainty in the magnitude and direction of the environmental energy because it is dynamic, changeable with time, and hard to forecast. This thesis develops an artificial intelligence for a mobile robot to learn from historical or forecasted data of environmental energy available in the area of interest which will help for a persistence monitoring under uncertainty using the developed algorithm.
Resumo:
The gross under-resourcing of conservation endeavours has placed an increasing emphasis on spending accountability. Increased accountability has led to monitoring forming a central element of conservation programs. Although there is little doubt that information obtained from monitoring can improve management of biodiversity, the cost (in time and/or money) of gaining this knowledge is rarely considered when making decisions about allocation of resources to monitoring. We present a simple framework allowing managers and policy advisors to make decisions about when to invest in monitoring to improve management. © 2010 Elsevier Ltd.
Resumo:
[Letter to editor, brief commentary or brief communication ]
Predicting intentions and behaviours in populations with or at-risk of diabetes: A systematic review
Resumo:
Purpose To systematically review the Theory of Planned Behaviour studies predicting self-care intentions and behaviours in populations with and at-risk of diabetes. Methods A systematic review using six electronic databases was conducted in 2013. A standardised protocol was used for appraisal. Studies eligibility included a measure of behaviour for healthy eating, physical activity, glucose monitoring, medication use (ii) the TPB variables (iii) the TPB tested in populations with diabetes or at-risk. Results Sixteen studies were appraised for testing the utility of the TPB. Studies included cross-sectional (n=7); prospective (n=5) and randomised control trials (n=4). Intention (18% – 76%) was the most predictive construct for all behaviours. Explained variance for intentions were similar across cross-sectional (28 -76%); prospective (28 -73%); and RCT studies (18 - 63%). RCTs (18 - 43%) provided slightly stronger evidence for predicting behaviour. Conclusions Few studies tested predictability of the TPB in populations with or at-risk of diabetes. This review highlighted differences in the predictive utility of the TPB suggesting that the model is behaviour and population specific. Findings on key determinants of specific behaviours contribute to a better understanding of mechanisms of behaviour change and are useful in designing targeted behavioural interventions for different diabetes populations.
Resumo:
Objective Explosive ordnance disposal (EOD) often requires technicians to wear multiple protective garments in challenging environmental conditions. The accumulative effect of increased metabolic cost coupled with decreased heat dissipation associated with these garments predisposes technicians to high levels of physiological strain. It has been proposed that a perceptual strain index (PeSI) using subjective ratings of thermal sensation and perceived exertion as surrogate measures of core body temperature and heart rate, may provide an accurate estimation of physiological strain. Therefore, this study aimed to determine if the PeSI could estimate the physiological strain index (PSI) across a range of metabolic workloads and environments while wearing heavy EOD and chemical protective clothing. Methods Eleven healthy males wore an EOD and chemical protective ensemble while walking on a treadmill at 2.5, 4 and 5.5 km·h− 1 at 1% grade in environmental conditions equivalent to wet bulb globe temperature (WBGT) 21, 30 and 37 °C. WBGT conditions were randomly presented and a maximum of three randomised treadmill walking trials were completed in a single testing day. Trials were ceased at a maximum of 60-min or until the attainment of termination criteria. A Pearson's correlation coefficient, mixed linear model, absolute agreement and receiver operating characteristic (ROC) curves were used to determine the relationship between the PeSI and PSI. Results A significant moderate relationship between the PeSI and the PSI was observed [r = 0.77; p < 0.001; mean difference = 0.8 ± 1.1 a.u. (modified 95% limits of agreement − 1.3 to 3.0)]. The ROC curves indicated that the PeSI had a good predictive power when used with two, single-threshold cut-offs to differentiate between low and high levels of physiological strain (area under curve: PSI three cut-off = 0.936 and seven cut-off = 0.841). Conclusions These findings support the use of the PeSI for monitoring physiological strain while wearing EOD and chemical protective clothing. However, future research is needed to confirm the validity of the PeSI for active EOD technicians operating in the field.
Resumo:
In the structural health monitoring (SHM) field, long-term continuous vibration-based monitoring is becoming increasingly popular as this could keep track of the health status of structures during their service lives. However, implementing such a system is not always feasible due to on-going conflicts between budget constraints and the need of sophisticated systems to monitor real-world structures under their demanding in-service conditions. To address this problem, this paper presents a comprehensive development of a cost-effective and flexible vibration DAQ system for long-term continuous SHM of a newly constructed institutional complex with a special focus on the main building. First, selections of sensor type and sensor positions are scrutinized to overcome adversities such as low-frequency and low-level vibration measurements. In order to economically tackle the sparse measurement problem, a cost-optimized Ethernet-based peripheral DAQ model is first adopted to form the system skeleton. A combination of a high-resolution timing coordination method based on the TCP/IP command communication medium and a periodic system resynchronization strategy is then proposed to synchronize data from multiple distributed DAQ units. The results of both experimental evaluations and experimental–numerical verifications show that the proposed DAQ system in general and the data synchronization solution in particular work well and they can provide a promising cost-effective and flexible alternative for use in real-world SHM projects. Finally, the paper demonstrates simple but effective ways to make use of the developed monitoring system for long-term continuous structural health evaluation as well as to use the instrumented building herein as a multi-purpose benchmark structure for studying not only practical SHM problems but also synchronization related issues.
Resumo:
Many researchers in the field of civil structural health monitoring (SHM) have developed and tested their methods on simple to moderately complex laboratory structures such as beams, plates, frames, and trusses. Fieldwork has also been conducted by many researchers and practitioners on more complex operating bridges. Most laboratory structures do not adequately replicate the complexity of truss bridges. Informed by a brief review of the literature, this paper documents the design and proposed test plan of a structurally complex laboratory bridge model that has been specifically designed for the purpose of SHM research. Preliminary results have been presented in the companion paper.
Resumo:
Many researchers in the field of civil structural health monitoring have developed and tested their methods on simple to moderately complex laboratory structures such as beams, plates, frames, and trusses. Field work has also been conducted by many researchers and practitioners on more complex operating bridges. Most laboratory structures do not adequately replicate the complexity of truss bridges. This paper presents some preliminary results of experimental modal testing and analysis of the bridge model presented in the companion paper, using the peak picking method, and compares these results with those of a simple numerical model of the structure. Three dominant modes of vibration were experimentally identified under 15 Hz. The mode shapes and order of the modes matched those of the numerical model; however, the frequencies did not match.
Resumo:
This paper presents a novel path planning method for minimizing the energy consumption of an autonomous underwater vehicle subjected to time varying ocean disturbances and forecast model uncertainty. The algorithm determines 4-Dimensional path candidates using Nonlinear Robust Model Predictive Control (NRMPC) and solutions optimised using A*-like algorithms. Vehicle performance limits are incorporated into the algorithm with disturbances represented as spatial and temporally varying ocean currents with a bounded uncertainty in their predictions. The proposed algorithm is demonstrated through simulations using a 4-Dimensional, spatially distributed time-series predictive ocean current model. Results show the combined NRMPC and A* approach is capable of generating energy-efficient paths which are resistant to both dynamic disturbances and ocean model uncertainty.
Resumo:
Background Procedural sedation and analgesia (PSA) is used to attenuate the pain and distress that may otherwise be experienced during diagnostic and interventional medical or dental procedures. As the risk of adverse events increases with the depth of sedation induced, frequent monitoring of level of consciousness is recommended. Level of consciousness is usually monitored during PSA with clinical observation. Processed electroencephalogram-based depth of anaesthesia (DoA) monitoring devices provide an alternative method to monitor level of consciousness that can be used in addition to clinical observation. However, there is uncertainty as to whether their routine use in PSA would be justified. Rigorous evaluation of the clinical benefits of DoA monitors during PSA, including comprehensive syntheses of the available evidence, is therefore required. One potential clinical benefit of using DoA monitoring during PSA is that the technology could improve patient safety by reducing sedation-related adverse events, such as death or permanent neurological disability. We hypothesise that earlier identification of lapses into deeper than intended levels of sedation using DoA monitoring leads to more effective titration of sedative and analgesic medications, and results in a reduction in the risk of adverse events caused by the consequences of over-sedation, such as hypoxaemia. The primary objective of this review is to determine whether using DoA monitoring during PSA in the hospital setting improves patient safety by reducing the risk of hypoxaemia (defined as an arterial partial pressure of oxygen below 60 mmHg or percentage of haemoglobin that is saturated with oxygen [SpO2] less than 90 %). Other potential clinical benefits of using DoA monitoring devices during sedation will be assessed as secondary outcomes. Methods/design Electronic databases will be systematically searched for randomized controlled trials comparing the use of depth of anaesthesia monitoring devices with clinical observation of level of consciousness during PSA. Language restrictions will not be imposed. Screening, study selection and data extraction will be performed by two independent reviewers. Disagreements will be resolved by discussion. Meta-analyses will be performed if suitable. Discussion This review will synthesise the evidence on an important potential clinical benefit of DoA monitoring during PSA within hospital settings.
Resumo:
There is currently a lack of reference values for indoor air fungal concentrations to allow for the interpretation of measurement results in subtropical school settings. Analysis of the results of this work established that, in the majority of properly maintained subtropical school buildings, without any major affecting events such as floods or visible mould or moisture contamination, indoor culturable fungi levels were driven by outdoor concentration. The results also allowed us to benchmark the “baseline range” concentrations for total culturable fungi, Penicillium spp., Cladosporium spp. and Aspergillus spp. in such school settings. The measured concentration of total culturable fungi and three individual fungal genera were estimated using Bayesian hierarchical modelling. Pooling of these estimates provided a predictive distribution for concentrations at an unobserved school. The results indicated that “baseline” indoor concentration levels for indoor total fungi, Penicillium spp., Cladosporium spp. and Aspergillus spp. in such school settings were generally ≤ 1450, ≤ 680, ≤ 480 and ≤ 90 cfu/m3, respectively, and elevated levels would indicate mould damage in building structures. The indoor/outdoor ratio for most classrooms had 95% credible intervals containing 1, indicating that fungi concentrations are generally the same indoors and outdoors at each school. Bayesian fixed effects regression modeling showed that increasing both temperature and humidity resulted in higher levels of fungi concentration.