355 resultados para Multiple visits
Resumo:
This article develops a method for analysis of growth data with multiple recaptures when the initial ages for all individuals are unknown. The existing approaches either impute the initial ages or model them as random effects. Assumptions about the initial age are not verifiable because all the initial ages are unknown. We present an alternative approach that treats all the lengths including the length at first capture as correlated repeated measures for each individual. Optimal estimating equations are developed using the generalized estimating equations approach that only requires the first two moment assumptions. Explicit expressions for estimation of both mean growth parameters and variance components are given to minimize the computational complexity. Simulation studies indicate that the proposed method works well. Two real data sets are analyzed for illustration, one from whelks (Dicathais aegaota) and the other from southern rock lobster (Jasus edwardsii) in South Australia.
Resumo:
The work is a report of research on using multiple inverters of Battery Energy Storage Systems with angle droop controllers to share real power in an isolated micro grid system consisting of inertia based Distributed Generation units and variable load. The proposed angle droop control method helps to balance the supply and demand in the micro grid autonomous mode through charging and discharging of the Battery Energy Storage Systems while ensuring that the state of charge of the storage devices is within safe operating conditions. The proposed method is also studied for its effectiveness for frequency control. The proposed control system is verified and its performance validated with simulation software MATLAB/SIMULINK.
Resumo:
This paper addresses the following predictive business process monitoring problem: Given the execution trace of an ongoing case,and given a set of traces of historical (completed) cases, predict the most likely outcome of the ongoing case. In this context, a trace refers to a sequence of events with corresponding payloads, where a payload consists of a set of attribute-value pairs. Meanwhile, an outcome refers to a label associated to completed cases, like, for example, a label indicating that a given case completed “on time” (with respect to a given desired duration) or “late”, or a label indicating that a given case led to a customer complaint or not. The paper tackles this problem via a two-phased approach. In the first phase, prefixes of historical cases are encoded using complex symbolic sequences and clustered. In the second phase, a classifier is built for each of the clusters. To predict the outcome of an ongoing case at runtime given its (uncompleted) trace, we select the closest cluster(s) to the trace in question and apply the respective classifier(s), taking into account the Euclidean distance of the trace from the center of the clusters. We consider two families of clustering algorithms – hierarchical clustering and k-medoids – and use random forests for classification. The approach was evaluated on four real-life datasets.
Resumo:
Red blood cells (RBCs) are the most common type of blood cells in the blood and 99% of the blood cells are RBCs. During the circulation of blood in the cardiovascular network, RBCs squeeze through the tiny blood vessels (capillaries). They exhibit various types of motions and deformed shapes, when flowing through these capillaries with diameters varying between 5 10 µm. RBCs occupy about 45 % of the whole blood volume and the interaction between the RBCs directly influences on the motion and the deformation of the RBCs. However, most of the previous numerical studies have explored the motion and deformation of a single RBC when the interaction between RBCs has been neglected. In this study, motion and deformation of two 2D (two-dimensional) RBCs in capillaries are comprehensively explored using a coupled smoothed particle hydrodynamics (SPH) and discrete element method (DEM) model. In order to clearly model the interactions between RBCs, only two RBCs are considered in this study even though blood with RBCs is continuously flowing through the blood vessels. A spring network based on the DEM is employed to model the viscoelastic membrane of the RBC while the inside and outside fluid of RBC is modelled by SPH. The effect of the initial distance between two RBCs, membrane bending stiffness (Kb) of one RBC and undeformed diameter of one RBC on the motion and deformation of both RBCs in a uniform capillary is studied. Finally, the deformation behavior of two RBCs in a stenosed capillary is also examined. Simulation results reveal that the interaction between RBCs has significant influence on their motion and deformation.
Genetic loci for Epstein-Barr Virus nuclear antigen-1 are associated with risk of multiple sclerosis
Resumo:
Common diseases such as endometriosis (ED), Alzheimer's disease (AD) and multiple sclerosis (MS) account for a significant proportion of the health care burden in many countries. Genome-wide association studies (GWASs) for these diseases have identified a number of individual genetic variants contributing to the risk of those diseases. However, the effect size for most variants is small and collectively the known variants explain only a small proportion of the estimated heritability. We used a linear mixed model to fit all single nucleotide polymorphisms (SNPs) simultaneously, and estimated genetic variances on the liability scale using SNPs from GWASs in unrelated individuals for these three diseases. For each of the three diseases, case and control samples were not all genotyped in the same laboratory. We demonstrate that a careful analysis can obtain robust estimates, but also that insufficient quality control (QC) of SNPs can lead to spurious results and that too stringent QC is likely to remove real genetic signals. Our estimates show that common SNPs on commercially available genotyping chips capture significant variation contributing to liability for all three diseases. The estimated proportion of total variation tagged by all SNPs was 0.26 (SE 0.04) for ED, 0.24 (SE 0.03) for AD and 0.30 (SE 0.03) for MS. Further, we partitioned the genetic variance explained into five categories by a minor allele frequency (MAF), by chromosomes and gene annotation. We provide strong evidence that a substantial proportion of variation in liability is explained by common SNPs, and thereby give insights into the genetic architecture of the diseases.
Resumo:
CONTEXT People meeting diagnostic criteria for anxiety or depressive disorders tend to score high on the personality scale of neuroticism. Studying this personality dimension can give insights into the etiology of these important psychiatric disorders. OBJECTIVES To undertake a comprehensive genome-wide linkage study of neuroticism using large study samples that have been measured multiple times and to compare the results between countries for replication and across time within countries for consistency. DESIGN Genome-wide linkage scan. SETTING Twin individuals and their family members from Australia and the Netherlands. PARTICIPANTS Nineteen thousand six hundred thirty-five sibling pairs completed self-report questionnaires for neuroticism up to 5 times over a period of up to 22 years. Five thousand sixty-nine sibling pairs were genotyped with microsatellite markers. METHODS Nonparametric linkage analyses were conducted in MERLIN-REGRESS for the mean neuroticism scores averaged across time. Additional analyses were conducted for the time-specific measures of neuroticism from each country to investigate consistency of linkage results. RESULTS Three chromosomal regions exceeded empirically derived thresholds for suggestive linkage using mean neuroticism scores: 10p 5 Kosambi cM (cM) (Dutch study sample), 14q 103 cM (Dutch study sample), and 18q 117 cM (combined Australian and Dutch study sample), but only 14q retained significance after correction for multiple testing. These regions all showed evidence for linkage in individual time-specific measures of neuroticism and 1 (18q) showed some evidence for replication between countries. Linkage intervals for these regions all overlap with regions identified in other studies of neuroticism or related traits and/or in studies of anxiety in mice. CONCLUSIONS Our results demonstrate the value of the availability of multiple measures over time and add to the optimism reported in recent reviews for replication of linkage regions for neuroticism. These regions are likely to harbor causal variants for neuroticism and its related psychiatric disorders and can inform prioritization of results from genome-wide association studies.
Resumo:
Accurate determination of same-sex twin zygosity is important for medical, scientific and personal reasons. Determination may be based upon questionnaire data, blood group, enzyme isoforms and fetal membrane examination, but assignment of zygosity must ultimately be confirmed by genotypic data. Here methods are reviewed for calculating average probabilities of correctly concluding a twin pair is monozygotic, given they share the same genotypes across all loci for commonly utilized multiplex short tandem repeat (STR) kits.
Resumo:
In this report, we describe a simple correction for multiple testing of single-nucleotide polymorphisms (SNPs) in linkage disequilibrium (LD) with each other, on the basis of the spectral decomposition (SpD) of matrices of pairwise LD between SNPs. This method provides a useful alternative to more computationally intensive permutation tests. Additionally, output from SNPSpD includes eigenvalues, principal-component coefficients, and factor "loadings" after varimax rotation, enabling the selection of a subset of SNPs that optimize the information in a genomic region.
Resumo:
Working on the serotonin (5-hydroxytryptamine, 5-HT) 5-HT2B receptor since several years, we have read with high interest the review by Hertz et al. (2015). Previous studies from our group demonstrated that a direct injection in mouse raphe nucleus of the 5-HT2B agonist BW723C86 has the ability to increase extracellular levels of serotonin, which can be blocked by the selective 5-HT2B receptor antagonist RS127445 (Doly et al., 2008, 2009). We also reported that an acute injection of paroxetine 2 mg/kg in mice knocked out for the 5-HT2B receptor gene or in wild type mice injected with RS127445 (0.5 mg/kg) triggers a strong reduction in extracellular accumulation of 5-HT in hippocampus (Diaz et al., 2012). Following these observations, we showed that acute and chronic BW723C86 injection (3 mg/kg) can mimic the fluoxetine (3 mg/kg) and paroxetine (1 mg/kg) behavioral and biochemical antidepressant effects in mice (Diaz and Maroteaux, 2011; Diaz et al., 2012)...
Resumo:
Age estimation from facial images is increasingly receiving attention to solve age-based access control, age-adaptive targeted marketing, amongst other applications. Since even humans can be induced in error due to the complex biological processes involved, finding a robust method remains a research challenge today. In this paper, we propose a new framework for the integration of Active Appearance Models (AAM), Local Binary Patterns (LBP), Gabor wavelets (GW) and Local Phase Quantization (LPQ) in order to obtain a highly discriminative feature representation which is able to model shape, appearance, wrinkles and skin spots. In addition, this paper proposes a novel flexible hierarchical age estimation approach consisting of a multi-class Support Vector Machine (SVM) to classify a subject into an age group followed by a Support Vector Regression (SVR) to estimate a specific age. The errors that may happen in the classification step, caused by the hard boundaries between age classes, are compensated in the specific age estimation by a flexible overlapping of the age ranges. The performance of the proposed approach was evaluated on FG-NET Aging and MORPH Album 2 datasets and a mean absolute error (MAE) of 4.50 and 5.86 years was achieved respectively. The robustness of the proposed approach was also evaluated on a merge of both datasets and a MAE of 5.20 years was achieved. Furthermore, we have also compared the age estimation made by humans with the proposed approach and it has shown that the machine outperforms humans. The proposed approach is competitive with current state-of-the-art and it provides an additional robustness to blur, lighting and expression variance brought about by the local phase features.
Resumo:
This paper presents an effective feature representation method in the context of activity recognition. Efficient and effective feature representation plays a crucial role not only in activity recognition, but also in a wide range of applications such as motion analysis, tracking, 3D scene understanding etc. In the context of activity recognition, local features are increasingly popular for representing videos because of their simplicity and efficiency. While they achieve state-of-the-art performance with low computational requirements, their performance is still limited for real world applications due to a lack of contextual information and models not being tailored to specific activities. We propose a new activity representation framework to address the shortcomings of the popular, but simple bag-of-words approach. In our framework, first multiple instance SVM (mi-SVM) is used to identify positive features for each action category and the k-means algorithm is used to generate a codebook. Then locality-constrained linear coding is used to encode the features into the generated codebook, followed by spatio-temporal pyramid pooling to convey the spatio-temporal statistics. Finally, an SVM is used to classify the videos. Experiments carried out on two popular datasets with varying complexity demonstrate significant performance improvement over the base-line bag-of-feature method.
Resumo:
A central tenet in the theory of reliability modelling is the quantification of the probability of asset failure. In general, reliability depends on asset age and the maintenance policy applied. Usually, failure and maintenance times are the primary inputs to reliability models. However, for many organisations, different aspects of these data are often recorded in different databases (e.g. work order notifications, event logs, condition monitoring data, and process control data). These recorded data cannot be interpreted individually, since they typically do not have all the information necessary to ascertain failure and preventive maintenance times. This paper presents a methodology for the extraction of failure and preventive maintenance times using commonly-available, real-world data sources. A text-mining approach is employed to extract keywords indicative of the source of the maintenance event. Using these keywords, a Naïve Bayes classifier is then applied to attribute each machine stoppage to one of two classes: failure or preventive. The accuracy of the algorithm is assessed and the classified failure time data are then presented. The applicability of the methodology is demonstrated on a maintenance data set from an Australian electricity company.