437 resultados para Hypoxia (Water)
Resumo:
We demonstrate potential applications for unusual dendrite like Au–Ag alloy nanoparticles formed via a galvanic replacement reaction in the ionic liquid [BMIM][BF4]. In comparison to Au–Ag alloy nanoshells synthesised via a similar reaction in water, the unusual branched structure of the dendritic materials led to increased electrocatalytic activity for the oxidation of both formaldehyde and hydrazine, and increased sensitivity and spectral resolution for the surface enhanced Raman scattering (SERS) of 4,4-bipyridal.
Resumo:
A numerical study is carried out to investigate the transition from laminar to chaos in mixed convection heat transfer inside a lid-driven trapezoidal enclosure. In this study, the top wall is considered as isothermal cold surface, which is moving in its own plane at a constant speed, and a constant high temperature is provided at the bottom surface. The enclosure is assumed to be filled with water-Al2O3 nanofluid. The governing Navier–Stokes and thermal energy equations are expressed in non-dimensional forms and are solved using Galerkin finite element method. Attention is paid in the present study on the pure mixed convection regime at Richandson number, Ri = 1. The numerical simulations are carried out over a wide range of Reynolds (0.1 ≤ Re ≤ 103) and Grashof (0.01 ≤ Gr ≤ 106) numbers. Effects of the presence of nanofluid on the characteristics of mixed convection heat transfer are also explored. The average Nusselt numbers of the heated wall are computed to demonstrate the influence of flow parameter variations on heat transfer. The corresponding change of flow and thermal fields is visualized from the streamline and the isotherm contour plots.
Resumo:
We investigated the effect of cold water immersion (CWI) on the recovery of muscle function and physiological responses following high-intensity resistance exercise. Using a randomized, cross-over design, 10 physically active men performed high-intensity resistance exercise, followed by one of two recovery interventions: 10 min of cold water immersion at 10°C, or 10 min active recovery (low-intensity cycling). After the recovery interventions, maximal muscle function was assessed after 2 h and 4 h by measuring jump height and isometric squat strength. Submaximal muscle function was assessed after 6 h by measuring the average load lifted during six sets of 10 squats at 80% 1RM. Intramuscular temperature (1 cm) was also recorded, and venous blood samples were analyzed for markers of metabolism, vasoconstriction and muscle damage. CWI did not enhance recovery of maximal muscle function. However, during the final three sets of the submaximal muscle function test, the participants lifted a greater load (p<0.05; 38%; Cohen’s d 1.3) following CWI compared with active recovery. During CWI, muscle temperature decreased 6°C below post-exercise values, and remained below pre-exercise values for another 35 min. Venous blood O2 saturation decreased below pre-exercise values for 1.5 h after CWI. Serum endothelin-1 concentration did not change after CWI, whereas it decreased after active recovery. Plasma myoglobin concentration was lower, whereas plasma interleukin-6 concentration was higher after CWI compared with active recovery. These results suggest that cold water immersion after resistance exercise allow athletes to complete more work during subsequent training sessions, which could enhance long-term training adaptations.
Resumo:
Leptospirosis outbreaks have been associated with many common water events including water consumption, water sports, environmental disasters and occupational exposure. The ability of leptospires to survive in moist environments makes them a high risk agent for infection following contact with any contaminated water source. Water treatment processes reduce the likelihood of leptospirosis or other microbial agents causing infection provided they do not malfunction and the distribution networks are maintained. Notably, there are many differences in water treatment systems around the world, particularly between developing and developed countries. Detection of leptospirosis in water samples is uncommonly performed by molecular methods.
Resumo:
Water education and conservation programs have grown exponentially in Australian primary and secondary schools and, although early childhood services have been slower to respond to the challenges of sustainability, they are catching up fast. One early program targeted at preschools was the Water Aware Centre Program in northern New South Wales developed by the local water supply authority. This paper reports on a qualitative study of children’s and teachers’ experiences of the program in three preschools. The study’s aim was to identify program attributes and pedagogies that supported learning and action taking for water conservation, and to investigate if and how the program influenced children’s and teachers’practices. Data were collected through an interview with the program designer, conversations with child participants of the program, and a qualitative survey with early childhood staff. A three-step thematic analysis was conducted on the children’s and teachers’ data. Findings revealed that the program expanded children and teachers’ ideas about water conservation and increased their water conservation practices. The children were found to influence the water conservation practices of the adults around them, thus changing practices at school and at home.
Resumo:
This research established innovative methods and a predictive model to evaluate water quality using the trace element and heavy metal concentrations of drinking water from the greater Brisbane area. Significantly, the combined use of Inductively Coupled Plasma - Mass Spectrometry and Chemometrics can be used worldwide to provide comprehensive, rapid and affordable analyses of elements in drinking water that can have a considerable impact on human health.
Resumo:
The water mouse, Xeromys myoides, is currently recognised as a vulnerable species in Australia, inhabiting a small number of distinct and isolated coastal regions of Queensland and the Northern Territory. An examination of the evolutionary history and contemporary influences shaping the genetic structure of this species is required to make informed conservation management decisions. Here, we report the first analysis undertaken on the phylogeography and population genetics of the water mouse across its mainland Australian distribution. Genetic diversity was assessed at two mitochondrial DNA (Cytochrome b, 1000 bp; D-loop, 400 bp) and eight microsatellite DNA loci. Very low genetic diversity was found, indicating that water mice underwent a recent expansion throughout their Australian range and constitute a single evolutionarily significant unit. Microsatellite analyses revealed that the highest genetic diversity was found in the Mackay region of central Queensland; population substructure was also identified, suggesting that local populations may be isolated in this region. Conversely, genetic diversity in the Coomera region of south-east Queensland was very low and the population in this region has experienced a significant genetic bottleneck. These results have significant implications for future management, particularly in terms of augmenting populations through translocations or reintroducing water mice in areas where they have gone extinct.
Resumo:
Three thousand liters of water were infiltrated from a 4 m diameter pond to track flow and transport inside fractured carbonates with 20-40 % porosity. Sixteen time-lapse 3D Ground Penetrating Radar (GPR) surveys with repetition intervals between 2 hrs and 5 days monitored the spreading of the water bulb in the subsurface. Based on local travel time shifts between repeated GPR survey pairs, localized changes of volumetric water content can be related to the processes of wetting, saturation and drainage. Deformation bands consisting of thin sub vertical sheets of crushed grains reduce the magnitude of water content changes but enhance flow in sheet parallel direction. This causes an earlier break through across a stratigraphic boundary compared to porous limestone without deformation bands. This experiment shows how time-lapse 3D GPR or 4D GPR can non-invasively track ongoing flow processes in rock-volumes of over 100 m3.
Resumo:
Objectives To estimate the burden of disease attributable to unsafe water, sanitation and hygiene (WSH) by age group for South Africa in 2000. Design World Health Organization comparative risk assessment methodology was used to estimate the disease burden attributable to an exposure by comparing the observed risk factor distribution with a theoretical lowest possible population distribution. A scenario-based approach was applied for estimating diarrhoeal disease burden from unsafe WSH. Six exposure scenarios were defined based on the type of water and sanitation infrastructure and environmental faecal-oral pathogen load. For ‘intestinal parasites’ and schistosomiasis, the burden was assumed to be 100% attributable to exposure to unsafe WSH. Setting South Africa. Outcome measures Disease burden from diarrhoeal diseases, intestinal parasites and schistosomiasis, measured by deaths and disability-adjusted life years (DALYs). Results 13 434 deaths were attributable to unsafe WSH accounting for 2.6% (95% uncertainty interval 2.4 - 2.7%) of all deaths in South Africa in 2000. The burden was especially high in children under 5 years, accounting for 9.3% of total deaths in this age group and 7.4% of burden of disease. Overall, the burden due to unsafe WSH was equivalent to 2.6% (95% uncertainty interval 2.5 - 2.7%) of the total disease burden for South Africa, ranking this risk factor seventh for the country. Conclusions Unsafe WSH remains an important risk factor for disease in South Africa, especially in children under 5. High priority needs to be given to the provision of safe and sustainable sanitation and water facilities and to promoting safe hygiene behaviours, particularly among children.