537 resultados para Graphic Method
Resumo:
Nitrogen-doped TiO2 nanofibres of anatase and TiO2(B) phases were synthesised by a reaction between titanate nanofibres of a layered structure and gaseous NH3 at 400–700 °C, following a different mechanism than that for the direct nitrogen doping from TiO2. The surface of the N-doped TiO2 nanofibres can be tuned by facial calcination in air to remove the surface-bonded N species, whereas the core remains N doped. N-Doped TiO2 nanofibres, only after calcination in air, became effective photocatalysts for the decomposition of sulforhodamine B under visible-light irradiation. The surface-oxidised surface layer was proven to be very effective for organic molecule adsorption, and the activation of oxygen molecules, whereas the remaining N-doped interior of the fibres strongly absorbed visible light, resulting in the generation of electrons and holes. The N-doped nanofibres were also used as supports of gold nanoparticle (Au NP) photocatalysts for visible-light-driven hydroamination of phenylacetylene with aniline. Phenylacetylene was activated on the N-doped surface of the nanofibres and aniline on the Au NPs. The Au NPs adsorbed on N-doped TiO2(B) nanofibres exhibited much better conversion (80 % of phenylacetylene) than when adsorbed on undoped fibres (46 %) at 40 °C and 95 % of the product is the desired imine. The surface N species can prevent the adsorption of O2 that is unfavourable for the hydroamination reaction, and thus, improve the photocatalytic activity. Removal of the surface N species resulted in a sharp decrease of the photocatalytic activity. These photocatalysts are feasible for practical applications, because they can be easily dispersed into solution and separated from a liquid by filtration, sedimentation or centrifugation due to their fibril morphology.
Resumo:
Debates over the extent of graphic imagery of death in newspapers often suffer from generalized assertions that are based on inadequate or incomplete empirical evidence. Newspapers are believed to display death in very graphic ways, with particularly the tabloid press assumedly leading a race to the bottom. This article reports the results of a study of tabloid and broadsheet images of death from the 2010 Haiti earthquake in eight Western European and North American countries. It shows that, far from omnipresent, graphic images of death are relatively rare. While tabloids overall display a larger percentage of graphic images, this was not the case everywhere, with particularly the UK, Canada and the US displaying strong similarities between tabloids and broadsheets. In Austria, Germany, Norway and Switzerland, on the other hand, there were distinct differences between the two types. The article argues that different extents of tabloidization may account for these differences.
Resumo:
Largely as a result of mass unemployment problems in many European countries, the dynamics of job creation has in recent years attracted increased interest on the part of academics as well as policy-makers. In connection to this, a large number of studies carried out in various countries have concluded that SMEs play a very large and/or growing role as job creators (Birch, 1979; Baldwin and Picot, 1995; Davidsson, 1995a; Davidsson, Lindmark and Olofsson, 1993; 1994; 1995; 1997a; 1997b; Fumagelli and Mussati, 1993; Kirchhoff and Phillips, 1988; Spilling, 1995; for further reference to studies carried out in a large number of countries see also Aiginger and Tichy, 1991; ENSR, 1994; Loveman and Sengenberger, 1991; OECD, 1987; Storey and Johnson, 1987). While most researchers agree on the importance of SMEs, there is some controversy as regards whether this is mainly a result of many small start-ups and incremental expansions, or if a small minority of high growth SMEs contribute the lion’s share of new employment. This is known as the ‘mice vs. gazelles’ or ‘flyers vs. trundlers’ debate. Storey strongly advocates the position that the small group of high growth SMEs are the ‘real’ job creators (Storey, 1994; Storey & Johnson, 1987), whereas, e.g., the Davidsson et al research in Sweden (cf. above) gives more support for the ‘mice’ hypothesis.
Resumo:
The numerical solution in one space dimension of advection--reaction--diffusion systems with nonlinear source terms may invoke a high computational cost when the presently available methods are used. Numerous examples of finite volume schemes with high order spatial discretisations together with various techniques for the approximation of the advection term can be found in the literature. Almost all such techniques result in a nonlinear system of equations as a consequence of the finite volume discretisation especially when there are nonlinear source terms in the associated partial differential equation models. This work introduces a new technique that avoids having such nonlinear systems of equations generated by the spatial discretisation process when nonlinear source terms in the model equations can be expanded in positive powers of the dependent function of interest. The basis of this method is a new linearisation technique for the temporal integration of the nonlinear source terms as a supplementation of a more typical finite volume method. The resulting linear system of equations is shown to be both accurate and significantly faster than methods that necessitate the use of solvers for nonlinear system of equations.
Resumo:
The acceptance of broadband ultrasound attenuation for the assessment of osteoporosis suffers from a limited understanding of ultrasound wave propagation through cancellous bone. It has recently been proposed that the ultrasound wave propagation can be described by a concept of parallel sonic rays. This concept approximates the detected transmission signal to be the superposition of all sonic rays that travel directly from transmitting to receiving transducer. The transit time of each ray is defined by the proportion of bone and marrow propagated. An ultrasound transit time spectrum describes the proportion of sonic rays having a particular transit time, effectively describing lateral inhomogeneity of transit times over the surface of the receiving ultrasound transducer. The aim of this study was to provide a proof of concept that a transit time spectrum may be derived from digital deconvolution of input and output ultrasound signals. We have applied the active-set method deconvolution algorithm to determine the ultrasound transit time spectra in the three orthogonal directions of four cancellous bone replica samples and have compared experimental data with the prediction from the computer simulation. The agreement between experimental and predicted ultrasound transit time spectrum analyses derived from Bland–Altman analysis ranged from 92% to 99%, thereby supporting the concept of parallel sonic rays for ultrasound propagation in cancellous bone. In addition to further validation of the parallel sonic ray concept, this technique offers the opportunity to consider quantitative characterisation of the material and structural properties of cancellous bone, not previously available utilising ultrasound.
Resumo:
The debate over the absence or presence of death in public discourse has dominated death studies for some time. While the argument that death had been removed from public discourse and only existed in the private realm dominated at first, in recent years scholars have come to accept that death has moved back into public discourse. An important aspect has been the role played by the mass media. However, there has been little empirical research as to what level of death is actually visible, for example in terms of photographs. To this end, this paper examines how two German and two Australian newspapers cover death in terms of graphic photographs. By examining the number and types of photographs published during a 2-month timeframe, as well as through in-depth interviews with journalists, this paper argues that visible death is still largely absent from public discourse. Importantly, there exist differences as to what level of graphic death is acceptable between individual newspapers, as well as countries, supporting the argument that the absence/presence of death dichotomy needs to be viewed in a much more complex light.
A finite volume method for solving the two-sided time-space fractional advection-dispersion equation
Resumo:
We present a finite volume method to solve the time-space two-sided fractional advection-dispersion equation on a one-dimensional domain. The spatial discretisation employs fractionally-shifted Grünwald formulas to discretise the Riemann-Liouville fractional derivatives at control volume faces in terms of function values at the nodes. We demonstrate how the finite volume formulation provides a natural, convenient and accurate means of discretising this equation in conservative form, compared to using a conventional finite difference approach. Results of numerical experiments are presented to demonstrate the effectiveness of the approach.
Resumo:
Detecting anomalies in the online social network is a significant task as it assists in revealing the useful and interesting information about the user behavior on the network. This paper proposes a rule-based hybrid method using graph theory, Fuzzy clustering and Fuzzy rules for modeling user relationships inherent in online-social-network and for identifying anomalies. Fuzzy C-Means clustering is used to cluster the data and Fuzzy inference engine is used to generate rules based on the cluster behavior. The proposed method is able to achieve improved accuracy for identifying anomalies in comparison to existing methods.
Resumo:
Dose-finding trials are a form of clinical data collection process in which the primary objective is to estimate an optimum dose of an investigational new drug when given to a patient. This thesis develops and explores three novel dose-finding design methodologies. All design methodologies presented in this thesis are pragmatic. They use statistical models, incorporate clinicians' prior knowledge efficiently, and prematurely stop a trial for safety or futility reasons. Designing actual dose-finding trials using these methodologies will minimize practical difficulties, improve efficiency of dose estimation, be flexible to stop early and reduce possible patient discomfort or harm.
Resumo:
2,2'-Biphenols are a large and diverse group of compounds with exceptional properties both as ligands and bioactive agents. Traditional methods for their synthesis by oxidative dimerisation are often problematic and lead to mixtures of ortho- and para-connected regioisomers. To compound these issues, an intermolecular dimerisation strategy is often inappropriate for the synthesis of heterodimers. The ‘acetal method’ provides a solution for these problems: stepwise tethering of two monomeric phenols enables heterodimer synthesis, enforces ortho regioselectivity and allows relatively facile and selective intramolecular reactions to take place. The resulting dibenzo[1,3]dioxepines have been analysed by quantum chemical calculations to obtain information about the activation barrier for ring flip between the enantiomers. Hydrolytic removal of the dioxepine acetal unit revealed the 2,2′-biphenol target.
Resumo:
Musculoskeletal pain is commonly reported by police officers. A potential cause of officer discomfort is a mismatch between vehicle seats and the method used for carrying appointments. Twenty-five police officers rated their discomfort while seated in: (1) a standard police vehicle seat, and (2) a vehicle seat custom-designed for police use. Discomfort was recorded in both seats while wearing police appointments on: (1) a traditional appointments belt, and (2) a load-bearing vest / belt combination (LBV). Sitting in the standard vehicle seat and carrying appointments on a traditional appointments belt were both associated with significantly elevated discomfort. Four vehicle seat features were most implicated as contributing to discomfort: back rest bolster prominence; lumbar region support; seat cushion width; and seat cushion bolster depth. Authorising the carriage of appointments using a LBV is a lower cost solution with potential to reduce officer discomfort. Furthermore, the introduction of custom-designed vehicle seats should be considered.
Resumo:
Spatially-explicit modelling of grassland classes is important to site-specific planning for improving grassland and environmental management over large areas. In this study, a climate-based grassland classification model, the Comprehensive and Sequential Classification System (CSCS) was integrated with spatially interpolated climate data to classify grassland in Gansu province, China. The study area is characterized by complex topographic features imposed by plateaus, high mountains, basins and deserts. To improve the quality of the interpolated climate data and the quality of the spatial classification over this complex topography, three linear regression methods, namely an analytic method based on multiple regression and residues (AMMRR), a modification of the AMMRR method through adding the effect of slope and aspect to the interpolation analysis (M-AMMRR) and a method which replaces the IDW approach for residue interpolation in M-AMMRR with an ordinary kriging approach (I-AMMRR), for interpolating climate variables were evaluated. The interpolation outcomes from the best interpolation method were then used in the CSCS model to classify the grassland in the study area. Climate variables interpolated included the annual cumulative temperature and annual total precipitation. The results indicated that the AMMRR and M-AMMRR methods generated acceptable climate surfaces but the best model fit and cross validation result were achieved by the I-AMMRR method. Twenty-six grassland classes were classified for the study area. The four grassland vegetation classes that covered more than half of the total study area were "cool temperate-arid temperate zonal semi-desert", "cool temperate-humid forest steppe and deciduous broad-leaved forest", "temperate-extra-arid temperate zonal desert", and "frigid per-humid rain tundra and alpine meadow". The vegetation classification map generated in this study provides spatial information on the locations and extents of the different grassland classes. This information can be used to facilitate government agencies' decision-making in land-use planning and environmental management, and for vegetation and biodiversity conservation. The information can also be used to assist land managers in the estimation of safe carrying capacities which will help to prevent overgrazing and land degradation.
Resumo:
Disjoint top-view networked cameras are among the most commonly utilized networks in many applications. One of the open questions for these cameras' study is the computation of extrinsic parameters (positions and orientations), named extrinsic calibration or localization of cameras. Current approaches either rely on strict assumptions of the object motion for accurate results or fail to provide results of high accuracy without the requirement of the object motion. To address these shortcomings, we present a location-constrained maximum a posteriori (LMAP) approach by applying known locations in the surveillance area, some of which would be passed by the object opportunistically. The LMAP approach formulates the problem as a joint inference of the extrinsic parameters and object trajectory based on the cameras' observations and the known locations. In addition, a new task-oriented evaluation metric, named MABR (the Maximum value of All image points' Back-projected localization errors' L2 norms Relative to the area of field of view), is presented to assess the quality of the calibration results in an indoor object tracking context. Finally, results herein demonstrate the superior performance of the proposed method over the state-of-the-art algorithm based on the presented MABR and classical evaluation metric in simulations and real experiments.
Resumo:
A sub‒domain smoothed Galerkin method is proposed to integrate the advantages of mesh‒free Galerkin method and FEM. Arbitrarily shaped sub‒domains are predefined in problems domain with mesh‒free nodes. In each sub‒domain, based on mesh‒free Galerkin weak formulation, the local discrete equation can be obtained by using the moving Kriging interpolation, which is similar to the discretization of the high‒order finite elements. Strain smoothing technique is subsequently applied to the nodal integration of sub‒domain by dividing the sub‒domain into several smoothing cells. Moreover, condensation of DOF can also be introduced into the local discrete equations to improve the computational efficiency. The global governing equations of present method are obtained on the basis of the scheme of FEM by assembling all local discrete equations of the sub‒domains. The mesh‒free properties of Galerkin method are retained in each sub‒domain. Several 2D elastic problems have been solved on the basis of this newly proposed method to validate its computational performance. These numerical examples proved that the newly proposed sub‒domain smoothed Galerkin method is a robust technique to solve solid mechanics problems based on its characteristics of high computational efficiency, good accuracy, and convergence.
Resumo:
Increasing the importance and use of infrastructures such as bridges, demands more effective structural health monitoring (SHM) systems. SHM has well addressed the damage detection issues through several methods such as modal strain energy (MSE). Many of the available MSE methods either have been validated for limited type of structures such as beams or their performance is not satisfactory. Therefore, it requires a further improvement and validation of them for different types of structures. In this study, an MSE method was mathematically improved to precisely quantify the structural damage at an early stage of formation. Initially, the MSE equation was accurately formulated considering the damaged stiffness and then it was used for derivation of a more accurate sensitivity matrix. Verification of the improved method was done through two plane structures: a steel truss bridge and a concrete frame bridge models that demonstrate the framework of a short- and medium-span of bridge samples. Two damage scenarios including single- and multiple-damage were considered to occur in each structure. Then, for each structure, both intact and damaged, modal analysis was performed using STRAND7. Effects of up to 5 per cent noise were also comprised. The simulated mode shapes and natural frequencies derived were then imported to a MATLAB code. The results indicate that the improved method converges fast and performs well in agreement with numerical assumptions with few computational cycles. In presence of some noise level, it performs quite well too. The findings of this study can be numerically extended to 2D infrastructures particularly short- and medium-span bridges to detect the damage and quantify it more accurately. The method is capable of providing a proper SHM that facilitates timely maintenance of bridges to minimise the possible loss of lives and properties.