667 resultados para 364.2
Resumo:
Objective: The aim of this paper is to propose a ‘Perceived barriers and lifestyle risk factor modification model’ that could be incorporated into existing frameworks for diabetes education to enhance lifestyle risk factor education in women. Setting: Diabetes education, community health. Primary argument: ‘Perceived barriers’ is a health promotion concept that has been found to be a significant predictor of health promotion behaviour. There is evidence that women face a range of perceived barriers that prevent them from engaging in healthy lifestyle activities. Despite this, current evidence based models of diabetes education do not explicitly incorporate the concept of perceived barriers. A model of risk factor reduction that incorporates ‘perceived barriers’ is proposed. Conclusion: Although further research is required, current approaches to risk factor reduction in type 2 diabetes could be enhanced by identification and goal setting to reduce an individual’s perceived barriers.
Resumo:
Background: The regulation of plasminogen activation is a key element in controlling proteolytic events in the extracellular matrix. Our previous studies had demonstrated that in inflamed gingival tissues, tissue-type plasminogen activator (t-PA) is significantly increased in the extracellular matrix of the connective tissue and that interleukin 1β (IL-1β) can up regulate the level of t-PA and plasminogen activator inhibitor-2 (PAI-2) synthesis by human gingival fibroblasts. Method: In the present study, the levels of t-PA and PAI-2 in gingival crevicular fluid (GCF) were measured from healthy, gingivitis and periodontitis sites and compared before and after periodontal treatment. Crevicular fluid from106 periodontal sites in 33 patients were collected. 24 sites from 11 periodontitis patients received periodontal treatment after the first sample collection and post-treatment samples were collected 14 days after treatment. All samples were analyzed by enzyme-linked immunosorbent assay (ELISA) for t-PA and PAI-2. Results: The results showed that significantly high levels of t-PA and PAI-2 in GCF were found in the gingivitis and periodontitis sites. Periodontal treatment led to significant decreases of PAI-2, but not t-PA, after 14 days. A significant positive linear correlation was found between t-PA and PAI-2 in GCF (r=0.80, p<0.01). In the healthy group, different sites from within the same subject showed little variation of t-PA and PAI-2 in GCF. However, the gingivitis and periodontitis sites showed large variation. These results suggest a good correlation between t-PA and PAI-2 with the severity of periodontal conditions. Conclusion: This study indicates that t-PA and PAI-2 may play a significant rôle in the periodontal tissue destruction and tissue remodeling and that t-PA and PAI-2 in GCF may be used as clinical markers to evaluate the periodontal diseases and assess treatment.
Resumo:
BACKGROUND: Demineralized freeze-dried bone allografts (DFDBAs) have been proposed as a useful adjunct in periodontal therapy to induce periodontal regeneration through the induction of new bone formation. The presence of bone morphogenetic proteins (BMPs) within the demineralized matrix has been proposed as a possible mechanism through which DFDBA may exert its biologic effect. However, in recent years, the predictability of results using DFDBA has been variable and has led to its use being questioned. One reason for the variability in tissue response may be attributed to differences in the processing of DFDBA, which may lead to loss of activity of any bioactive substances within the DFDBA matrix. Therefore, the purpose of this investigation was to determine whether there are detectable levels of bone morphogenetic proteins in commercial DFDBA preparations. METHODS: A single preparation of DFDBA was obtained from three commercial sources. Each preparation was studied in triplicate. Proteins within the DFDBA samples were first extracted with 4M guanidinium HCI for seven days at 40 degrees celsius and the residue was further extracted with 4M guanidinium HCL/EDTA for seven days at 40 degrees celsius. Two anti-human BMP-2 and -4 antibodies were used for the detection of the presence of BMP's in the extracts. RESULTS: Neither BMP-2 nor BMP-4 was detected in any of the extracts. When recombinant human BMP-2 and -4 were added throughout the extraction process of DFDBA extraction, not only were intact proteins detected but smaller molecular weight fragments were also noted in the extract. CONCLUSIONS: These results indicate that all of the DFDBA samples tested had no detectable amounts of BMP-2 and -4. In addition, an unknown substance present in the DFDBA may be responsible for degradation of whatever BMPs might be present.
Resumo:
Both tissue plasminogen activator (t-PA) and plasminogen activator inhibitor 2 (PAI-2) are important proteolysis factors present in inflamed human periodontal tissues. The aim of the present study was to investigate the effect of lipopolysaccharide (LPS) on the synthesis of t-PA and PAI-2 by human gingival fibroblasts (HGF). LPS from different periodontal pathogens including Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis and Fusobacterium nucleatum were extracted by the hot phenol water method. The levels of t-PA and PAI-2 secreted into the cell culture media were measured by enzyme-linked immunosorbent assays (ELISA). The mRNA for t-PA and PAI-2 were measured by RT-PCR. The results showed t-PA synthesis was increased in response to all types of LPS studied and PAI-2 level was increased by LPS from A. actinomycetemcomitans and F. nucleatum, but not P. gingivalis. When comparing the effects of LPS from non-periodontal bacteria (Escherichia coli and Salmonella enteritidis) with the LPS from periodontal pathogens, we found that the ratio of t-PA to PAI-2 was greater following exposure of the cells to LPS from periodontal pathogens. The highest ratio of t-PA to PAI-2 was found in those cells exposed to LPS from P. gingivalis. These results indicate that LPS derived from periodontal pathogens may cause unbalanced regulation of plasminogen activator and plasminogen activator inhibitor by HGF and such an effect may, in part, contribute to the destruction of periodontal connective tissue through dysregulated pericellular proteolysis.
Resumo:
Cell-surface proteoglycans participate in several biological functions including interactions with adhesion molecules, growth factors and a variety of other effector molecules. Accordingly, these molecules play a central role in various aspects of cell–cell and cell–matrix interactions. To investigate the expression and distribution of the cell surface proteoglycans, syndecan-1 and -2, during periodontal wound healing, immunohistochemical analyses were carried out using monoclonal antibodies against syndecan-1, or -2 core proteins. Both syndecan-1 and -2 were expressed and distributed differentially at various stages of early inflammatory cell infiltration, granulation tissue formation, and tissue remodeling in periodontal wound healing. Expression of syndecan-1 was noted in inflammatory cells within and around the fibrin clots during the earliest stages of inflammatory cell infiltration. During granulation tissue formation it was noted in fibroblast-like cells and newly formed blood vessels. Syndecan-1 was not seen in newly formed bone or cementum matrix at any of the time periods studied. Syndecan-1 expression was generally less during the late stages of wound healing but was markedly expressed in cells that were close to the repairing junctional epithelium. In contrast, syndecan-2 expression and distribution was not evident at the early stages of inflammatory cell infiltration. During the formation of granulation tissue and subsequent tissue remodeling, syndecan-2 was expressed extracellularly in the newly formed fibrils which were oriented toward the root surface. Syndecan-2 was found to be significantly expressed on cells that were close to the root surface and within the matrix of repaired cementum covering root dentin as well as at the alveolar bone edge. These findings indicate that syndecan-1 and -2 may have distinctive functions during wound healing of the periodontium. The appearance of syndecan-1 may involve both cell–cell and cell–matrix interactions, while syndecan-2 showed a predilection to associate with cell–matrix interactions during hard tissue formation.
Resumo:
Context: Postprandial dysmetabolism is emerging as an important cardiovascular risk factor. Augmentation index (AIx) is a measure of systemic arterial stiffness and independently predicts cardiovascular outcome. Objective: The objective of this study was to assess the effect of a standardized high-fat meal on metabolic parameters and AIx in 1) lean, 2) obese nondiabetic, and 3) subjects with type 2 diabetes mellitus (T2DM). Design and Setting: Male subjects (lean, n = 8; obese, n = 10; and T2DM, n = 10) were studied for 6 h after a high-fat meal and water control. Glucose, insulin, triglycerides, and AIx (radial applanation tonometry) were measured serially to determine the incremental area under the curve (iAUC). Results: AIx decreased in all three groups after a high-fat meal. A greater overall postprandial reduction in AIx was seen in lean and T2DM compared with obese subjects (iAUC, 2251 +/- 1204, 2764 +/- 1102, and 1187 +/- 429% . min, respectively; P < 0.05). The time to return to baseline AIx was significantly delayed in subjects with T2DM (297 +/- 68 min) compared with lean subjects (161 +/- 88 min; P < 0.05). There was a significant correlation between iAUC AIx and iAUC triglycerides (r = 0.50; P < 0.05). Conclusions: Obesity is associated with an attenuated overall postprandial decrease in AIx. Subjects with T2DM have a preserved, but significantly prolonged, reduction in AIx after a high-fat meal. The correlation between AIx and triglycerides suggests that postprandial dysmetabolism may impact on vascular dynamics. The markedly different response observed in the obese subjects compared with those with T2DM was unexpected and warrants additional evaluation.
Resumo:
Protease-activated receptor-2 (PAR2) is a G protein coupled receptor (GPCR) that is activated by proteolytic cleavage of its amino terminal domain by trypsin-like serine proteases. Cleavage of this receptor exposes a neoepitope, termed the tethered ligand (TL), which binds intramolecularly within the receptor to stimulate signal transduction via coupled G proteins. PAR2-mediated signal transduction is also experimentally stimulated by hexapeptides (agonist peptides; APs) that are homologous to the TL sequence. Due to the irreversible nature of PAR2 proteolysis, downstream signal transduction is tightly regulated. Following activation, PAR2 is rapidly uncoupled from downstream signalling by the post-translational modifications phosphorylation and ubiquination which facilitate interactions with â- arrestin. This scaffolding protein couples PAR2 to the internalisation machinery initiating its desensitisation and trafficking through the early and late endosomes followed by receptor degradation. PAR2 is widely expressed in mammalian tissues with key roles for this receptor in cardiovascular, respiratory, nervous and musculoskeletal systems. This receptor has also been linked to pathological states with aberrant expression and signalling noted in several cancers. In prostate cancer, PAR2 signalling induces migration and proliferation of tumour derived cell lines, while elevated receptor expression has been noted in malignant tissues. Importantly, a role for this receptor has also been suggested in prostate cancer bone metastasis as coexpression of PAR2 and a proteolytic activator has been demonstrated by immunohistochemical analysis. Based on these data, the primary focus of this project has been on two aspects of PAR2 biology. The first is characterisation of cellular mechanisms that regulate PAR2 signalling and trafficking. The second aspect is the role of this receptor in prostate cancer bone metastasis. In addition, to permit these studies, it was first necessary to evaluate the specificity of the commercially available anti-PAR2 antibodies SAM11, C17, N19 and H99. The evaluation of the four commercially available antibodies was assessed using four techniques: immunoprecipitation; Western blot analysis; immunofluorescence; and flow cytometry. These approaches demonstrated that three of the antibodies efficiently detect ectopically expressed PAR2 by each of these techniques. A significant finding from this study was that N19 was the only antibody able to specifically detect N-glycosylated endogenous PAR2 by Western blot analysis. This analysis was performed on lysates from prostate cancer derived cell lines and tissue derived from wildtype and PAR2 knockout mice. Importantly, further evaluation demonstrated that this antibody also efficiently detects endogenous PAR2 at the cell surface by flow cytometry. The anti-PAR2 antibody N19 was used to explore the in vitro role of palmitoylation, the post-translational addition of palmitate, in PAR2 signalling, trafficking, cell surface expression and desensitization. Significantly, use of the palmitoylation inhibitor 2-bromopalmitate indicated that palmitate addition is important in trafficking of PAR2 endogenously expressed by prostate cancer cell lines. This was supported by palmitate labelling experiments using two approaches which showed that PAR2 stably expressed by CHO cells is palmitoylated and that palmitoylation occurs on cysteine 361. Another key finding from this study is that palmitoylation is required for optimal PAR2 signalling as Ca2+ flux assays indicated that in response to trypsin agonism, palmitoylation deficient PAR2 is ~9 fold less potent than wildtype receptor with a reduction of about 33% in the maximum signal induced via the mutant receptor. Confocal microscopy, flow cytometry and cell surface biotinylation analyses demonstrated that palmitoylation is required for efficient cell surface expression of PAR2. Importantly, this study also identified that palmitoylation of this receptor within the Golgi apparatus is required for efficient agonist-induced rab11amediated trafficking of PAR2 to the cell surface. Interestingly, palmitoylation is also required for receptor desensitization, as agonist-induced â-arrestin recruitment and receptor degradation were markedly reduced in CHO-PAR2-C361A cells compared with CHO-PAR2 cells. Collectively, these data provide new insights on the life cycle of PAR2 and demonstrate that palmitoylation is critical for efficient signalling, trafficking, cell surface localization and degradation of this receptor. This project also evaluated PAR2 residues involved in ligand docking. Although the extracellular loop (ECL)2 of PAR2 is known to be required for agonist-induced signal transduction, the binding pocket for receptor agonists remains to be determined. In silico homology modelling, based on a crystal structure for the prototypical GPCR rhodopsin, and ligand docking were performed to identify PAR2 transmembrane (TM) amino acids potentially involved in agonist binding. These methods identified 12 candidate residues that were mutated to examine the binding site of the PAR2 TL, revealed by trypsin cleavage, as well as of the soluble ligands 2f-LIGRLO-NH2 and GB110, which are both structurally based on the AP SLIGRLNH2. Ligand binding was evaluated from the impact of the mutated residues on PAR2-mediated calcium mobilisation. An important finding from these experiments was that mutation of residues Y156 and Y326 significantly reduced 2f-LIGRLO-NH2 and GB110 agonist activity. L307 was also important for GB110 activity. Intriguingly, mutation of PAR2 residues did not alter trypsin-induced signalling to the same extent as for the soluble agonists. The reason for this difference remains to be further examined by in silico and in vitro experimentation and, potentially, crystal structure studies. However, these findings identified the importance of TM domains in PAR2 ligand docking and will enhance the design of both PAR2 agonists and potentially agents to inhibit signalling (antagonists). The potential importance of PAR2 in prostate cancer bone metastasis was examined using a mouse model. In patients, prostate cancer bone metastases cause bone growth by disrupting bone homeostasis. In an attempt to mimic prostate cancer growth in bone, PAR2 responsive 22Rv1 prostate cancer cells, which form mixed osteoblastic and osteolytic lesions, were injected into the proximal aspect of mouse tibiae. A role for PAR2 was assessed by treating these mice with the recently developed PAR2 antagonist GB88. As controls, animals bearing intra-tibial tumours were also treated with vehicle (olive oil) or the prostate cancer chemotherapeutic docetaxel. The effect of these treatments on bone was examined radiographically and by micro-CT. Consistent with previous studies, 22Rv1 tumours caused osteoblastic periosteal spicule formation and concurrent osteolytic bone loss. Significantly, blockade of PAR2 signalling reduced the osteoblastic and osteolytic phenotype of 22Rv1 tumours in bone. No bone defects were detected in mice treated with docetaxel. These qualitative data will be followed in the future by quantitative micro-CT analysis as well as histology and histomorphometry analysis of already collected tissues. Nonetheless, these preliminary experiments highlight a potential role for PAR2 in prostate cancer growth in bone. In summary, in vitro studies have defined mechanisms regulating PAR2 activation, downstream signalling and trafficking and in vivo studies point to a potential role for this receptor in prostate cancer bone metastasis. The outcomes of this project are that a greater understanding of the biology of PAR2 may lead to the development of strategies to modulate the function of this receptor in disease.
Resumo:
In the title compound, C18H19Cl3O2, which is the 4-ethoxyphenyl analogue of the insecticidally active 4-methoxyphenyl compound methoxychlor, the dihedral angle between the two benzene rings is 60.38(13)deg. An intramolecular aromatic C-H...Cl interaction is present.
Resumo:
Diet and medical treatment are the standard treatment for type 2 diabetes. In obese subjects with type 2 diabetes, bariatric surgery is effective in resolving diabetes. Two clinical trials comparing bariatric surgery to medical treatment were evaluated. Both the Surgical Treatment And Medications Potentially Eradicate Diabetes Efficiently (STAMPEDE) trial (laparoscopic Roux-En Y gastric bypass and sleeve gastrectomy) and the DIet and medical therapy versus BAriatric SurgerY in type 2 diabetes (DIBASY) trial (laparoscopic gastric bypass and biliopancreatic-diversion) showed that surgery was more effective than medical care in resolving or managing type 2 diabetes. Larger studies, or a compilation of studies, are needed to determine whether one of these procedures is better, or if they are all similarly effective, and this should also be weighed against the risk of the operations.
Resumo:
Social media and web 2.0 tools offer opportunities to devise novel participation strategies that can engage previously difficult to reach as well as new segments of society in urban planning. This paper examines participatory planning in the four local government areas of Brisbane City Council, Gold Coast City Council, Redland City Council, and Toowoomba Regional Council, all situated in South East Queensland, Australia. The paper discusses how social media and web 2.0 tools can deliver a more engaging planning experience to citizens, and investigates local government’s current use and receptiveness to social media tools for plan making and community engagement. The study’s research informed the development of criteria to assess the level of participation reached through the current use of social media and web 2.0 in the four local government areas. This resulted in an adaptation of the International Association for Public Participation (IAP2) Toolbox to integrate these new tools which is being presented to encourage further discussion and evaluation by planning professionals.
Resumo:
In the structure of the title compound C17H16Br2O3, which is a restricted commercial acaricide (common name bromopropylate), has two independent and conformationally similar molecules in the asymmetric unit [dihedral angle between the planes of the two phenyl rings in each, 68.7(4) and 77.4(5)deg]. The C-atoms of the isopropyl group of one of the molecules are disordered over two sites with occupancies of 0.638 and 0.362. Minor non-merohedral twinning was also present in the crystal. Intermolecular hydrogen-bonding interactions involving the hydroxy groups and carboxyl O-atom acceptors give separate centrosymmetric homodimers through cyclic hydrogen-bonding motifs [graph set R2/2(10)].
Resumo:
Copoly(2-oxazoline)s, prepared by cationic ring-opening polymerization of 2-(dec-9-enyl)-2-oxazoline with either 2-methyl-2-oxazoline or 2-ethyl-2-oxazoline, have been crosslinked with small dithiol molecules under UV-irradiation to form homogeneous networks. In-situ monitoring of the crosslinking reaction by photo-rheology revealed network formation within minutes. The degree of swelling in water was found to be tunable by the hydrophilicity of the starting macromers and the proportion of alkene side arms. Furthermore, degradable hydrogels have been prepared based on a hydrolytically cleavable dithiol crosslinker.
Resumo:
Background: Effective self-management of diabetes is essential for the reduction of diabetes-related complications, as global rates of diabetes escalate. Methods: Randomised controlled trial. Adults with type 2 diabetes (n = 120), with HbA1c greater than or equal to 7.5 %, were randomly allocated (4 × 4 block randomised block design) to receive an automated, interactive telephone-delivered management intervention or usual routine care. Baseline sociodemographic, behavioural and medical history data were collected by self-administered questionnaires and biological data were obtained during hospital appointments. Health-related quality of life (HRQL) was measured using the SF-36. Results: The mean age of participants was 57.4 (SD 8.3), 63 % of whom were male. There were no differences in demographic, socioeconomic and behavioural variables between the study arms at baseline. Over the six-month period from baseline, participants receiving the Australian TLC (Telephone-Linked Care) Diabetes program showed a 0.8 % decrease in geometric mean HbA1c from 8.7 % to 7.9 %, compared with a 0.2 % HbA1c reduction (8.9 % to 8.7 %) in the usual care arm (p = 0.002). There was also a significant improvement in mental HRQL, with a mean increase of 1.9 in the intervention arm, while the usual care arm decreased by 0.8 (p = 0.007). No significant improvements in physical HRQL were observed. Conclusions: These analyses indicate the efficacy of the Australian TLC Diabetes program with clinically significant post-intervention improvements in both glycaemic control and mental HRQL. These observed improvements, if supported and maintained by an ongoing program such as this, could significantly reduce diabetes-related complications in the longer term. Given the accessibility and feasibility of this kind of program, it has strong potential for providing effective, ongoing support to many individuals with diabetes in the future.