322 resultados para Vehicle components.
Resumo:
Much interest has been expressed in the construct metacognition, the individual's knowledge and control of his own cognitive processes. Recent educational proposals have suggested the training of general metacognitive principles in schools. The exact nature of the construct has, however, remained vague. The aim of the present study was to provide some clarity. In a study of the metacognitive responses of 144 primary school children (aged 7‐11 years) four measures commonly used to assess metacognitive function were examined. First, the content of each measure was examined. Secondly, in an attempt to identify a metacognitive factor, commonality among the measures, both of developmental patterns and statistical relationship, was sought. Whilst a common pattern of development in the children's responses to the four measures was identified, factor analysis failed to provide evidence for a common metacognitive factor and unified construct.
Resumo:
Road transport plays a significant role in various industries and mobility services around the globe and has a vital impact on our daily lives. However it also has serious impacts on both public health and the environment. In-vehicle feedback systems are a relatively new approach to encouraging driver behaviour change for improving fuel efficiency and safety in automotive environments. While many studies claim that the adoption of eco-driving practices, such as eco-driving training programs and in-vehicle feedback to drivers, has the potential to improve fuel efficiency, limited research has integrated safety and eco-driving. Therefore, this research seeks to use human factors related theories and practices to inform the design and evaluation of an in-vehicle Human Machine Interface (HMI) providing real-time driver feedback with the aim of improving both fuel efficiency and safety.
Resumo:
The commonly used "end diagnosis" phenotype that is adopted in linkage and association studies of complex traits is likely to represent an oversimplified model of the genetic background of a disease. This is also likely to be the case for common types of migraine, for which no convincingly associated genetic variants have been reported. In headache disorders, most genetic studies have used end diagnoses of the International Headache Society (IHS) classification as phenotypes. Here, we introduce an alternative strategy; we use trait components--individual clinical symptoms of migraine--to determine affection status in genomewide linkage analyses of migraine-affected families. We identified linkage between several traits and markers on chromosome 4q24 (highest LOD score under locus heterogeneity [HLOD] 4.52), a locus we previously reported to be linked to the end diagnosis migraine with aura. The pulsation trait identified a novel locus on 17p13 (HLOD 4.65). Additionally, a trait combination phenotype (IHS full criteria) revealed a locus on 18q12 (HLOD 3.29), and the age at onset trait revealed a locus on 4q28 (HLOD 2.99). Furthermore, suggestive or nearly suggestive evidence of linkage to four additional loci was observed with the traits phonophobia (10q22) and aggravation by physical exercise (12q21, 15q14, and Xp21), and, interestingly, these loci have been linked to migraine in previous studies. Our findings suggest that the use of symptom components of migraine instead of the end diagnosis provides a useful tool in stratifying the sample for genetic studies.
Resumo:
The current state of the practice in Blackspot Identification (BSI) utilizes safety performance functions based on total crash counts to identify transport system sites with potentially high crash risk. This paper postulates that total crash count variation over a transport network is a result of multiple distinct crash generating processes including geometric characteristics of the road, spatial features of the surrounding environment, and driver behaviour factors. However, these multiple sources are ignored in current modelling methodologies in both trying to explain or predict crash frequencies across sites. Instead, current practice employs models that imply that a single underlying crash generating process exists. The model mis-specification may lead to correlating crashes with the incorrect sources of contributing factors (e.g. concluding a crash is predominately caused by a geometric feature when it is a behavioural issue), which may ultimately lead to inefficient use of public funds and misidentification of true blackspots. This study aims to propose a latent class model consistent with a multiple crash process theory, and to investigate the influence this model has on correctly identifying crash blackspots. We first present the theoretical and corresponding methodological approach in which a Bayesian Latent Class (BLC) model is estimated assuming that crashes arise from two distinct risk generating processes including engineering and unobserved spatial factors. The Bayesian model is used to incorporate prior information about the contribution of each underlying process to the total crash count. The methodology is applied to the state-controlled roads in Queensland, Australia and the results are compared to an Empirical Bayesian Negative Binomial (EB-NB) model. A comparison of goodness of fit measures illustrates significantly improved performance of the proposed model compared to the NB model. The detection of blackspots was also improved when compared to the EB-NB model. In addition, modelling crashes as the result of two fundamentally separate underlying processes reveals more detailed information about unobserved crash causes.
Resumo:
Emissions of gases and particles from sea-faring ships have been shown to impact on the atmospheric chemistry and climate. To efficiently monitor and report these emissions found from a ship’s plume, the concept of using a multi-rotor or UAV to hover inside or near the exhaust of the ship to actively record the data in real time is being developed. However, for the required sensors obtain the data; their sensors must face into the airflow of the ships plume. This report presents an approach to have sensors able to read in the chemicals and particles emitted from the ship without affecting the flight dynamics of the multi-rotor UAV by building a sealed chamber in which a pump can take in the surrounding air (outside the downwash effect of the multi-rotor) where the sensors are placed and can analyse the gases safely. Results show that the system is small, lightweight and air-sealed and ready for flight test.
Resumo:
The test drive is a well-known step in car buying. In the emerging plug-in electric vehicle (PEV) market, however, the influence of a pre-purchase test drive on a consumer's inclination to purchase is unknown. Policy makers and industry participants both are eager to understand what factors motivate vehicle consumers at the point-of-sale. A number of researchers have used choice models to shed light on consumer perceptions of PEVs, and others have investigated consumer change in disposition toward a PEV over the course of a trial, wherein test driving a PEV may take place over a number of consecutive days, weeks or months. However, there is little written on the impact of a short-term test drive - a typical experience at dealerships or public "ride-and-drive" events. The impact of a typical test drive, often measured in minutes of driving, is not well understood. This paper first presents a synthesis of the literature on the effect of PEV test drives as they relate to consumer disposition toward PEVs. An analysis of data obtained from an Australian case study whereby attitudinal and stated preference data were collected pre- and post- test drive at public "ride-and-drive" event held Brisbane, Queensland in March 2014 using a custom-designed iPad application. Motorists' perceptions and choice preferences around PEVs were captured, revealing the relative importance of their experience behind the wheel. Using the Australian context as a case-study, this paper presents an exploratory study of consumers' stated preferences toward PEVs both before and after a short test drive.
Resumo:
This chapter defines food literacy and its components using the empirical data collected in two studies undertaken in 2010 and 2011 as part of the author’s PhD thesis. The first was a Delphi study of Australian food experts and the second was a study of young adults across a spectrum of disadvantage. Defining food literacy and identifying its components was an iterative process. At different times throughout the research, each study informed the other. This chapter will describe the components of food literacy, the data used to identify them and how they combined to produce a definition of food literacy.