322 resultados para Rail Joints, Rail-wheel Impact, Health Monitoring, Strains, Wavelets
Resumo:
In Australia, railway systems play a vital role in transporting the sugarcane crop from farms to mills. In this paper, a novel job shop approach is proposed to create a more efficient integrated harvesting and sugarcane transport scheduling system to reduce the cost of sugarcane transport. There are several benefits that can be attained by treating the train scheduling problem as a job shop problem. Job shop is generic and suitable for all trains scheduling problems. Job shop technique prevents operating two trains on one section at the same time because it considers that the section or the machine is unique. This technique is more promising to find better solutions in reasonable computation times.
Resumo:
Improved forecasting of urban rail patronage is essential for effective policy development and efficient planning for new rail infrastructure. Past modelling and forecasting of urban rail patronage has been based on legacy modelling approaches and often conducted at the general level of public transport demand, rather than being specific to urban rail. This project canvassed current Australian practice and international best practice to develop and estimate time series and cross-sectional models of rail patronage for Australian mainland state capital cities. This involved the implementation of a large online survey of rail riders and non-riders for each of the state capital cities, thereby resulting in a comprehensive database of respondent socio-economic profiles, travel experience, attitudes to rail and other modes of travel, together with stated preference responses to a wide range of urban travel scenarios. Estimation of the models provided a demonstration of their ability to provide information on the major influences on the urban rail travel decision. Rail fares, congestion and rail service supply all have a strong influence on rail patronage, while a number of less significant factors such as fuel price and access to a motor vehicle are also influential. Of note, too, is the relative homogeneity of rail user profiles across the state capitals. Rail users tended to have higher incomes and education levels. They are also younger and more likely to be in full-time employment than non-rail users. The project analysis reported here represents only a small proportion of what could be accomplished utilising the survey database. More comprehensive investigation was beyond the scope of the project and has been left for future work.
Resumo:
Derailments due to lateral collisions between heavy road vehicles and passenger trains at level crossings (LCs) are serious safety issues. A variety of countermeasures in terms of traffic laws, communication technology and warning devices are used for minimising LC accidents; however, innovative civil infrastructure solution is rare. This paper presents a study of the efficacy of guard rail system (GRS) to minimise the derailment potential of trains laterally collided by heavy road vehicles at LCs. For this purpose, a three-dimensional dynamic model of a passenger train running on a ballasted track fitted with guard rail subject to lateral impact caused by a road truck is formulated. This model is capable of predicting the lateral collision-induced derailments with and without GRS. Based on dynamic simulations, derailment prevention mechanism of the GRS is illustrated. Sensitivities of key parameters of the GRS, such as the flange way width, the installation height and contact friction, to the efficacy of GRS are reported. It is shown that guard rails can enhance derailment safety against lateral impacts at LCs.
Resumo:
Open biomass burning from wildfires and the prescribed burning of forests and farmland is a frequent occurrence in South-East Queensland (SEQ), Australia. This work reports on data collected from 10-30 September 2011, which covers the days before (10-14 September), during (15-20 September) and after (21-30 September) a period of biomass burning in SEQ. The aim of this project was to comprehensively quantify the impact of the biomass burning on air quality in Brisbane, the capital city of Queensland. A multi-parameter field measurement campaign was conducted and ambient air quality data from 13 monitoring stations across SEQ were analysed. During the burning period, the average concentrations of all measured pollutants increased (from 20% to 430%) compared to the non-burning period (both before and after burning), except for total xylenes. The average concentration of O3, NO2, SO2, benzene, formaldehyde, PM10, PM2.5 and visibility-reducing particles reached their highest levels for the year, which were up to 10 times higher than annual average levels, while PM10, PM2.5 and SO2 concentrations exceeded the WHO 24-hour guidelines and O3 concentration exceeded the WHO maximum 8-hour average threshold during the burning period. Overall spatial variations showed that all measured pollutants, with the exception of O3, were closer to spatial homogeneity during the burning compared to the non-burning period. In addition to the above, elevated concentrations of three biomass burning organic tracers (levoglucosan, mannosan and galactosan), together with the amount of non-refractory organic particles (PM1) and the average value of f60 (attributed to levoglucosan), reinforce that elevated pollutant concentration levels were due to emissions from open biomass burning events, 70% of which were prescribed burning events. This study, which is the first and most comprehensive of its kind in Australia, provides quantitative evidence of the significant impact of open biomass burning events, especially prescribed burning, on urban air quality. The current results provide a solid platform for more detailed health and modelling investigations in the future.
Resumo:
This book provides an overview of state of the art assessments of water quality; with an understanding how water quality is affected, and improving water quality for irrigation, drinking and recreation activities.
Resumo:
Stress- and strain-controlled tests of heat treated high-strength rail steel (Australian Standard AS1085.1) have been performed in order to improve the characterisation of the said material׳s ratcheting and fatigue wear behaviour. The hardness of the rail head material has also been studied and it has been found that hardness reduces considerably below four-millimetres from the rail top surface. Historically, researchers have used test coupons with circular cross-sections to conduct cyclic load tests. Such test coupons, typically five-millimetres in gauge diameter and ten‐millimetres in grip diameter, are usually taken from the rail head sample. When there is considerable variation of material properties over the cross-section it becomes likely that localised properties of the rail material will be missed. In another case from the literature, disks 47 mm in diameter for a twin-disk rolling contact test machine were obtained directly from the rail sample and used to validate ratcheting and rolling contact fatigue wear models. The question arises: How accurate are such tests, especially when large material property gradients exist? In this research paper, the effects of rail sampling location on the ratcheting behaviour of AS1085.1 rail steel were investigated using rectangular-shaped specimens obtained at four different depths to observe their respective cyclic plasticity behaviour. The microstructural features of the test coupons were also analysed, especially the pearlite inter-lamellar spacing which showed strong correlation with both hardness and cyclic plasticity behaviour of the material. This work ultimately provides new data and testing methodology to aid the selection of valid parameters for material constitutive models to better understand rail surface ratcheting and wear.
Resumo:
Because of the bottlenecking operations in a complex coal rail system, millions of dollars are costed by mining companies. To handle this issue, this paper investigates a real-world coal rail system and aims to optimise the coal railing operations under constraints of limited resources (e.g., limited number of locomotives and wagons). In the literature, most studies considered the train scheduling problem on a single-track railway network to be strongly NP-hard and thus developed metaheuristics as the main solution methods. In this paper, a new mathematical programming model is formulated and coded by optimization programming language based on a constraint programming (CP) approach. A new depth-first-search technique is developed and embedded inside the CP model to obtain the optimised coal railing timetable efficiently. Computational experiments demonstrate that high-quality solutions are obtainable in industry-scale applications. To provide insightful decisions, sensitivity analysis is conducted in terms of different scenarios and specific criteria. Keywords Train scheduling · Rail transportation · Coal mining · Constraint programming