344 resultados para Quasi-Bilateral Generating Function
Resumo:
Many websites presently provide the facility for users to rate items quality based on user opinion. These ratings are used later to produce item reputation scores. The majority of websites apply the mean method to aggregate user ratings. This method is very simple and is not considered as an accurate aggregator. Many methods have been proposed to make aggregators produce more accurate reputation scores. In the majority of proposed methods the authors use extra information about the rating providers or about the context (e.g. time) in which the rating was given. However, this information is not available all the time. In such cases these methods produce reputation scores using the mean method or other alternative simple methods. In this paper, we propose a novel reputation model that generates more accurate item reputation scores based on collected ratings only. Our proposed model embeds statistical data, previously disregarded, of a given rating dataset in order to enhance the accuracy of the generated reputation scores. In more detail, we use the Beta distribution to produce weights for ratings and aggregate ratings using the weighted mean method. Experiments show that the proposed model exhibits performance superior to that of current state-of-the-art models.
Resumo:
Purpose Melanopsin-expressing retinal ganglion cells (mRGCs) have non-image forming functions including mediation of the pupil light reflex (PLR). There is limited knowledge about mRGC function in retinal disease. Initial retinal changes in age-related macular degeneration (AMD) occur in the paracentral region where mRGCs have their highest density, making them vulnerable during disease onset. In this cross-sectional clinical study, we measured the PLR to determine if mRGC function is altered in early stages of macular degeneration. Methods Pupil responses were measured in 8 early AMD patients (AREDS 2001 classification; mean age 72.6 ± 7.2 years, 5M, and 3F) and 12 healthy control participants (mean age 66.6 ± 6.1 years, 8M and 4F) using a custom-built Maxwellian-view pupillometer. Stimuli were 0.5 Hz sinewaves (10 s duration, 35.6° diameter) of short wavelength light (464nm, blue; retinal irradiance = 14.5 log quanta.cm-2.s-1) to produce high melanopsin excitation and of long wavelength light (638nm, red; retinal irradiance = 14.9 log quanta.cm-2.s-1), to bias activation to outer retina and provide a control. Baseline pupil diameter was determined during a 10 s pre-stimulus period. The post illumination pupil response (PIPR) was recorded for 40 s. The 6 s PIPR and maximum pupil constriction were expressed as percentage baseline (M ± SD). Results The blue PIPR was significantly less sustained (p<0.01) in the early AMD group (75.49 ± 7.88%) than the control group (58.28 ± 9.05%). The red PIPR was not significantly different (p>0.05) between the early AMD (84.79 ± 4.03%) and control groups (82.01 ± 5.86%). Maximum constriction amplitude in the early AMD group for blue (43.67 ± 6.35%) and red (48.64 ± 6.49%) stimuli were not significantly different to the control group for blue (39.94 ± 3.66%) and red (44.98 ± 3.15%) stimuli (p>0.05). Conclusions These results are suggestive of inner retinal mRGC deficits in early AMD. This non-invasive, objective measure of pupil responses may provide a new method for quantifying mRGC function and monitoring AMD progression.
Resumo:
We consider rank-based regression models for repeated measures. To account for possible withinsubject correlations, we decompose the total ranks into between- and within-subject ranks and obtain two different estimators based on between- and within-subject ranks. A simple perturbation method is then introduced to generate bootstrap replicates of the estimating functions and the parameter estimates. This provides a convenient way for combining the corresponding two types of estimating function for more efficient estimation.
Resumo:
We consider the analysis of longitudinal data when the covariance function is modeled by additional parameters to the mean parameters. In general, inconsistent estimators of the covariance (variance/correlation) parameters will be produced when the "working" correlation matrix is misspecified, which may result in great loss of efficiency of the mean parameter estimators (albeit the consistency is preserved). We consider using different "Working" correlation models for the variance and the mean parameters. In particular, we find that an independence working model should be used for estimating the variance parameters to ensure their consistency in case the correlation structure is misspecified. The designated "working" correlation matrices should be used for estimating the mean and the correlation parameters to attain high efficiency for estimating the mean parameters. Simulation studies indicate that the proposed algorithm performs very well. We also applied different estimation procedures to a data set from a clinical trial for illustration.
Resumo:
Robust estimation often relies on a dispersion function that is more slowly varying at large values than the square function. However, the choice of tuning constant in dispersion functions may impact the estimation efficiency to a great extent. For a given family of dispersion functions such as the Huber family, we suggest obtaining the "best" tuning constant from the data so that the asymptotic efficiency is maximized. This data-driven approach can automatically adjust the value of the tuning constant to provide the necessary resistance against outliers. Simulation studies show that substantial efficiency can be gained by this data-dependent approach compared with the traditional approach in which the tuning constant is fixed. We briefly illustrate the proposed method using two datasets.
Resumo:
The method of generalized estimating equation-, (GEEs) has been criticized recently for a failure to protect against misspecification of working correlation models, which in some cases leads to loss of efficiency or infeasibility of solutions. However, the feasibility and efficiency of GEE methods can be enhanced considerably by using flexible families of working correlation models. We propose two ways of constructing unbiased estimating equations from general correlation models for irregularly timed repeated measures to supplement and enhance GEE. The supplementary estimating equations are obtained by differentiation of the Cholesky decomposition of the working correlation, or as score equations for decoupled Gaussian pseudolikelihood. The estimating equations are solved with computational effort equivalent to that required for a first-order GEE. Full details and analytic expressions are developed for a generalized Markovian model that was evaluated through simulation. Large-sample ".sandwich" standard errors for working correlation parameter estimates are derived and shown to have good performance. The proposed estimating functions are further illustrated in an analysis of repeated measures of pulmonary function in children.
Resumo:
Prostate cancer is a leading contributor to male cancer-related deaths worldwide. Kallikrein-related peptidases (KLKs) are serine proteases that exhibit deregulated expression in prostate cancer, with KLK3, or prostate specific antigen (PSA), being the widely-employed clinical biomarker for prostate cancer. Other KLKs, such as KLK2, show promise as prostate cancer biomarkers and, additionally, their altered expression has been utilised for the design of KLK-targeted therapies. There is also a large body of in vitro and in vivo evidence supporting their role in cancer-related processes. Here, we review the literature on studies to date investigating the potential of other KLKs, in addition to PSA, as biomarkers and in therapeutic options, as well as their current known functional roles in cancer progression. Increased knowledge of these KLK-mediated functions, including degradation of the extracellular matrix, local invasion, cancer cell proliferation, interactions with fibroblasts, angiogenesis, migration, bone metastasis and tumour growth in vivo, may help define new roles as prognostic biomarkers and novel therapeutic targets for this cancer.
Resumo:
The method of generalised estimating equations for regression modelling of clustered outcomes allows for specification of a working matrix that is intended to approximate the true correlation matrix of the observations. We investigate the asymptotic relative efficiency of the generalised estimating equation for the mean parameters when the correlation parameters are estimated by various methods. The asymptotic relative efficiency depends on three-features of the analysis, namely (i) the discrepancy between the working correlation structure and the unobservable true correlation structure, (ii) the method by which the correlation parameters are estimated and (iii) the 'design', by which we refer to both the structures of the predictor matrices within clusters and distribution of cluster sizes. Analytical and numerical studies of realistic data-analysis scenarios show that choice of working covariance model has a substantial impact on regression estimator efficiency. Protection against avoidable loss of efficiency associated with covariance misspecification is obtained when a 'Gaussian estimation' pseudolikelihood procedure is used with an AR(1) structure.
Resumo:
Background Sensorimotor function is degraded in patients after lower limb arthroplasty. Sensorimotor training is thought to improve sensorimotor skills, however, the optimal training stimulus with regard to volume, frequency, duration, and intensity is still unknown. The aim of this study, therefore, was to firstly quantify the progression of sensorimotor function after total hip (THA) or knee (TKA) arthroplasty and, as second step, to evaluate effects of different sensorimotor training volumes. Methods 58 in-patients during their rehabilitation after THA or TKA participated in this prospective cohort study. Sensorimotor function was assessed using a test battery including measures of stabilization capacity, static balance, proprioception, and gait, along with a self-reported pain and function. All participants were randomly assigned to one of three intervention groups performing sensorimotor training two, four, or six times per week. Outcome measures were taken at three instances, at baseline (pre), after 1.5 weeks (mid) and at the conclusion of the 3 week program (post). Results All measurements showed significant improvements over time, with the exception of proprioception and static balance during quiet bipedal stance which showed no significant main effects for time or intervention. There was no significant effect of sensorimotor training volume on any of the outcome measures. Conclusion We were able to quantify improvements in measures of dynamic, but not static, sensorimotor function during the initial three weeks of rehabilitation following TKA/THA. Although sensorimotor improvements were independent of the training volume applied in the current study, long-term effects of sensorimotor training volume need to be investigated to optimize training stimulus recommendations.
Resumo:
Indirect and qualitative tests of pancreatic function are commonly used to screen patients with cystic fibrosis for pancreatic insufficiency. In an attempt to develop a more quantitative assessment, we compared the usefulness of measuring serum pancreatic lipase using a newly developed enzyme-linked immunosorbent immunoassay with that of cationic trypsinogen using a radioimmunoassay in the assessment of exocrine pancreatic function in patients with cystic fibrosis. Previously, we have shown neither lipase nor trypsinogen to be of use in assessing pancreatic function prior to 5 years of age because the majority of patients with cystic fibrosis in early infancy have elevated serum levels regardless of pancreatic function. Therefore, we studied 77 patients with cystic fibrosis older than 5 years of age, 41 with steatorrhea and 36 without steatorrhea. In addition, 28 of 77 patients consented to undergo a quantitative pancreatic stimulation test. There was a significant difference between the steatorrheic and nonsteatorrheic patients with the steatorrheic group having lower lipase and trypsinogen values than the nonsteatorrheic group (P < .001). Sensitivities and specificities in detecting steatorrhea were 95% and 86%, respectively, for lipase and 93% and 92%, respectively, for trypsinogen. No correlations were found between the serum levels of lipase and trypsinogen and their respective duodenal concentrations because of abnormally high serum levels of both enzymes found in some nonsteatorrheic patients. We conclude from this study that both serum lipase and trypsinogen levels accurately detect steatorrhea in patients with cystic fibrosis who are older than 5 years but are imprecise indicators of specific pancreatic exocrine function above the level needed for normal fat absorption.
Resumo:
- Background This study examined relationships between adiposity, physical functioning and physical activity. - Methods Obese (N=107) and healthy-weight (N=132) children aged 10-13 years underwent assessments of percent body fat (%BF, dual energy X-ray absorptiometry), knee extensor strength (KE, isokinetic dynamometry), cardiorespiratory fitness (CRF, peak oxygen uptake by cycle ergometry), physical health-related quality of life (HRQOL), worst pain intensity and walking capacity [six-minute walk (6MWT)]. Structural equation modelling was used to assess relationships between variables. - Results Moderate relationships were observed between %BF and 6MWT, KE strength corrected for mass and CRF relative to mass (r -.36 to -.69, P≤.007). Weak relationships were found between: %BF and physical HRQOL (r -.27, P=.008); CRF relative to mass and physical HRQOL (r -.24, P=.003); physical activity and 6MWT (r .17, P=.004). Squared multiple correlations showed that 29.6% variance in physical HRQOL was explained by %BF, pain and CRF relative to mass, while 28% variance in 6MWT was explained by %BF and physical activity. - Conclusions It appears that children with a higher body fat percentage have poorer KE strength, CRF and overall physical functioning. Reducing percent fat appears to be the best target to improve functioning. However, a combined approach to intervention, targeting reductions in body fat percentage, pain and improvements in physical activity and CRF may assist physical functioning.
Resumo:
Proximal tubule epithelial cells (PTEC) of the kidney line the proximal tubule downstream of the glomerulus and play a major role in the re-absorption of small molecular weight proteins that may pass through the glomerular filtration process. In the perturbed disease state PTEC also contribute to the inflammatory disease process via both positive and negative mechanisms via the production of inflammatory cytokines which chemo-attract leukocytes and the subsequent down-modulation of these cells to prevent uncontrolled inflammatory responses. It is well established that dendritic cells are responsible for the initiation and direction of adaptive immune responses. Both resident and infiltrating dendritic cells are localised within the tubulointerstitium of the renal cortex, in close apposition to PTEC, in inflammatory disease states. We previously demonstrated that inflammatory PTEC are able to modulate autologous human dendritic cell phenotype and functional responses. Here we extend these findings to characterise the mechanisms of this PTEC immune-modulation using primary human PTEC and autologous monocyte-derived dendritic cells (MoDC) as the model system. We demonstrate that PTEC express three inhibitory molecules: (i) cell surface PD-L1 that induces MoDC expression of PD-L1; (ii) intracellular IDO that maintains the expression of MoDC CD14, drives the expression of CD80, PD-L1 and IL-10 by MoDC and inhibits T cell stimulatory capacity; and (iii) soluble HLA-G (sHLA-G) that inhibits HLA-DR and induces IL-10 expression by MoDC. Collectively the results demonstrate that primary human PTEC are able to modulate autologous DC phenotype and function via multiple complex pathways. Further dissection of these pathways is essential to target therapeutic strategies in the treatment of inflammatory kidney disorders.
Resumo:
The accumulation of deficits with increasing age results in a decline in the functional capacity of multiple organs and systems. These changes can have a significant influence on the pharmacokinetics and pharmacodynamics of prescribed drugs. Although alterations in body composition and worsening renal clearance are important considerations, for most drugs the liver has the greatest effect on metabolism. Age-related change in hepatic function thereby causes much of the variability in older people’s responses to medication. In this review, we propose that a decline in the ability of the liver to inactivate toxins may contribute to a proinflammatory state in which frailty can develop. Since inflammation also downregulates drug metabolism, medication prescribed to frail older people in accordance with disease-specific guidelines may undergo reduced systemic clearance, leading to adverse drug reactions, further functional decline and increasing polypharmacy, exacerbating rather than ameliorating frailty status. We also describe how increasing chronological age and frailty status impact liver size, blood flow and protein binding and enzymes of drug metabolism. This is used to contextualise our discussion of appropriate prescribing practices. For example, while the general axiom of ‘start low, go slow’ should underpin the initiation of medication (titrating to a defined therapeutic goal), it is important to consider whether drug clearance is flow or capacity-limited. By summarising the effect of age-related changes in hepatic function on medications commonly used in older people, we aim to provide a guide that will have high clinical utility for practising geriatricians.
Resumo:
We followed by X-ray Photoelectron Spectroscopy (XPS) the time evolution of graphene layers obtained by annealing 3C SiC(111)/Si(111) crystals at different temperatures. The intensity of the carbon signal provides a quantification of the graphene thickness as a function of the annealing time, which follows a power law with exponent 0.5. We show that a kinetic model, based on a bottom-up growth mechanism, provides a full explanation to the evolution of the graphene thickness as a function of time, allowing to calculate the effective activation energy of the process and the energy barriers, in excellent agreement with previous theoretical results. Our study provides a complete and exhaustive picture of Si diffusion into the SiC matrix, establishing the conditions for a perfect control of the graphene growth by Si sublimation.