385 resultados para PP-MA
Resumo:
Peter S. Menell and Sarah M. Tran (ed.), Intellectual Property, Innovation and the Environment, Cheltenham (UK) and Northampton (MA): Edward Elgar, 2014, 756 pp Hardback 978 1 78195 160 6, http://www.e-elgar.com/bookentry_main.lasso?id=15063 There has been a longstanding deadlock over intellectual property and clean technologies in international climate talks. The United States — and other developed countries such as Japan, Denmark Germany, the United Kingdom, Australia, and New Zealand — have pushed for stronger and longer protection of intellectual property rights related to clean technologies. BASIC countries — such as Brazil, South Africa, India, and China — have pushed for greater flexibilities in respect of intellectual property for the purpose of addressing climate change and global warming. Small island states, least developed countries, and nations vulnerable to climate change have called for climate-adaptation and climate-mitigation technologies to be available in the public domain. In the lead-up to the United Nations Climate Summit in New York on the 23rd September 2014, it is timely to consider the debate over intellectual property, innovation, the environment, and climate change.
Resumo:
The 12.7-10.5 Ma Cougar Point Tuff in southern Idaho, USA, consists of 10 large-volume (>10²-10³ km³ each), high-temperature (800-1000 °C), rhyolitic ash-flow tuffs erupted from the Bruneau-Jarbidge volcanic center of the Yellowstone hotspot. These tuffs provide evidence for compositional and thermal zonation in pre-eruptive rhyolite magma, and suggest the presence of a long-lived reservoir that was tapped by numerous large explosive eruptions. Pyroxene compositions exhibit discrete compositional modes with respect to Fe and Mg that define a linear spectrum punctuated by conspicuous gaps. Airfall glass compositions also cluster into modes, and the presence of multiple modes indicates tapping of different magma volumes during early phases of eruption. Equilibrium assemblages of pigeonite and augite are used to reconstruct compositional and thermal gradients in the pre-eruptive reservoir. The recurrence of identical compositional modes and of mineral pairs equilibrated at high temperatures in successive eruptive units is consistent with the persistence of their respective liquids in the magma reservoir. Recurrence intervals of identical modes range from 0.3 to 0.9 Myr and suggest possible magma residence times of similar duration. Eruption ages, magma temperatures, Nd isotopes, and pyroxene and glass compositions are consistent with a long-lived, dynamically evolving magma reservoir that was chemically and thermally zoned and composed of multiple discrete magma volumes.
Resumo:
The phase relations have been investigated experimentally at 200 and 500 MPa as a function of water activity for one of the least evolved (Indian Batt Rhyolite) and of a more evolved rhyolite composition (Cougar Point Tuff XV) from the 12·8-8·1 Ma Bruneau-Jarbidge eruptive center of the Yellowstone hotspot. Particular priority was given to accurate determination of the water content of the quenched glasses using infrared spectroscopic techniques. Comparison of the composition of natural and experimentally synthesized phases confirms that high temperatures (>900°C) and extremely low melt water contents (<1·5 wt % H₂O) are required to reproduce the natural mineral assemblages. In melts containing 0·5-1·5 wt % H₂O, the liquidus phase is clinopyroxene (excluding Fe-Ti oxides, which are strongly dependent on fO₂), and the liquidus temperature of the more evolved Cougar Point Tuff sample (BJR; 940-1000°C) is at least 30°C lower than that of the Indian Batt Rhyolite lava sample (IBR2; 970-1030°C). For the composition BJR, the comparison of the compositions of the natural and experimental glasses indicates a pre-eruptive temperature of at least 900°C. The composition of clinopyroxene and pigeonite pairs can be reproduced only for water contents below 1·5 wt % H₂O at 900°C, or lower water contents if the temperature is higher. For the composition IBR2, a minimum temperature of 920°C is necessary to reproduce the main phases at 200 and 500 MPa. At 200 MPa, the pre-eruptive water content of the melt is constrained in the range 0·7-1·3 wt % at 950°C and 0·3-1·0 wt % at 1000°C. At 500 MPa, the pre-eruptive temperatures are slightly higher (by 30-50°C) for the same ranges of water concentration. The experimental results are used to explore possible proxies to constrain the depth of magma storage. The crystallization sequence of tectosilicates is strongly dependent on pressure between 200 and 500 MPa. In addition, the normative Qtz-Ab-Or contents of glasses quenched from melts coexisting with quartz, sanidine and plagioclase depend on pressure and melt water content, assuming that the normative Qtz and Ab/Or content of such melts is mainly dependent on pressure and water activity, respectively. The combination of results from the phase equilibria and from the composition of glasses indicates that the depth of magma storage for the IBR2 and BJR compositions may be in the range 300-400 MPa (13 km) and 200-300 MPa (10 km), respectively.
Resumo:
High-angular resolution diffusion imaging (HARDI) can reconstruct fiber pathways in the brain with extraordinary detail, identifying anatomical features and connections not seen with conventional MRI. HARDI overcomes several limitations of standard diffusion tensor imaging, which fails to model diffusion correctly in regions where fibers cross or mix. As HARDI can accurately resolve sharp signal peaks in angular space where fibers cross, we studied how many gradients are required in practice to compute accurate orientation density functions, to better understand the tradeoff between longer scanning times and more angular precision. We computed orientation density functions analytically from tensor distribution functions (TDFs) which model the HARDI signal at each point as a unit-mass probability density on the 6D manifold of symmetric positive definite tensors. In simulated two-fiber systems with varying Rician noise, we assessed how many diffusionsensitized gradients were sufficient to (1) accurately resolve the diffusion profile, and (2) measure the exponential isotropy (EI), a TDF-derived measure of fiber integrity that exploits the full multidirectional HARDI signal. At lower SNR, the reconstruction accuracy, measured using the Kullback-Leibler divergence, rapidly increased with additional gradients, and EI estimation accuracy plateaued at around 70 gradients.
Resumo:
To classify each stage for a progressing disease such as Alzheimer’s disease is a key issue for the disease prevention and treatment. In this study, we derived structural brain networks from diffusion-weighted MRI using whole-brain tractography since there is growing interest in relating connectivity measures to clinical, cognitive, and genetic data. Relatively little work has usedmachine learning to make inferences about variations in brain networks in the progression of the Alzheimer’s disease. Here we developed a framework to utilize generalized low rank approximations of matrices (GLRAM) and modified linear discrimination analysis for unsupervised feature learning and classification of connectivity matrices. We apply the methods to brain networks derived from DWI scans of 41 people with Alzheimer’s disease, 73 people with EMCI, 38 people with LMCI, 47 elderly healthy controls and 221 young healthy controls. Our results show that this new framework can significantly improve classification accuracy when combining multiple datasets; this suggests the value of using data beyond the classification task at hand to model variations in brain connectivity.
Resumo:
Termites have colonized many habitats and are among the most abundant animals in tropical ecosystems, which they modify considerably through their actions. The timing of their rise in abundance and of the dispersal events that gave rise to modern termite lineages is not well understood. To shed light on termite origins and diversification, we sequenced the mitochondrial genome of 48 termite species and combined them with 18 previously sequenced termite mitochondrial genomes for phylogenetic and molecular clock analyses using multiple fossil calibrations. The 66 genomes represent most major clades of termites. Unlike previous phylogenetic studies based on fewer molecular data, our phylogenetic tree is fully resolved for the lower termites. The phylogenetic positions of Macrotermitinae and Apicotermitinae are also resolved as the basal groups in the higher termites, but in the crown termitid groups, including Termitinae + Syntermitinae + Nasutitermitinae + Cubitermitinae, the position of some nodes remains uncertain. Our molecular clock tree indicates that the lineages leading to termites and Cryptocercus roaches diverged 170 Ma (153-196 Ma 95% confidence interval [CI]), that modern Termitidae arose 54 Ma (46-66 Ma 95% CI), and that the crown termitid group arose 40 Ma (35-49 Ma 95% CI). This indicates that the distribution of basal termite clades was influenced by the final stages of the breakup of Pangaea. Our inference of ancestral geographic ranges shows that the Termitidae, which includes more than 75% of extant termite species, most likely originated in Africa or Asia, and acquired their pantropical distribution after a series of dispersal and subsequent diversification events.
Resumo:
The Bruneau–Jarbidge eruptive center of the central Snake River Plain in southern Idaho, USA produced multiple rhyolite lava flows with volumes of <10 km³ to 200 km³ each from ~11.2 to 8.1 Ma, most of which follow its climactic phase of large-volume explosive volcanism, represented by the Cougar Point Tuff, from 12.7 to 10.5 Ma. These lavas represent the waning stages of silicic volcanism at a major eruptive center of the Yellowstone hotspot track. Here we provide pyroxene compositions and thermometry results from several lavas that demonstrate that the demise of the silicic volcanic system was characterized by sustained, high pre-eruptive magma temperatures (mostly ≥950 °C) prior to the onset of exclusively basaltic volcanism at the eruptive center. Pyroxenes display a variety of textures in single samples, including solitary euhedral crystals as well as glomerocrysts, crystal clots and annealed microgranular inclusions of pyroxene ±magnetite± plagioclase. Pigeonite and augite crystals are unzoned, and there are no detectable differences in major and minor element compositions according to textural variety — mineral compositions in the microgranular inclusions and crystal clots are identical to those of phenocrysts in the host lavas. In contrast to members of the preceding Cougar Point Tuff that host polymodal glass and mineral populations, pyroxene compositions in each of the lavas are characterized by single rather than multiple discrete compositional modes. Collectively, the lavas reproduce and extend the range of Fe–Mg pyroxene compositional modes observed in the Cougar Point Tuff to more Mg-rich varieties. The compositionally homogeneous populations of pyroxene in each of the lavas, as well as the lack of core-to-rim zonation in individual crystals suggest that individual eruptions each were fed by compositionally homogeneous magma reservoirs, and similarities with the Cougar Point Tuff suggest consanguinity of such reservoirs to those that supplied the polymodal Cougar Point Tuff. Pyroxene thermometry results obtained using QUILF equilibria yield pre-eruptive magma temperatures of 905 to 980 °C, and individual modes consistently record higher Ca content and higher temperatures than pyroxenes with equivalent Fe–Mg ratios in the preceding Cougar Point Tuff. As is the case with the Cougar Point Tuff, evidence for up-temperature zonation within single crystals that would be consistent with recycling of sub- or near-solidus material from antecedent magma reservoirs by rapid reheating is extremely rare. Also, the absence of intra-crystal zonation, particularly at crystal rims, is not easily reconciled with cannibalization of caldera fill that subsided into pre-eruptive reservoirs. The textural, compositional and thermometric results rather are consistent with minor re-equilibration to higher temperatures of the unerupted crystalline residue from the explosive phase of volcanism, or perhaps with newly generated magmas from source materials very similar to those for the Cougar Point Tuff. Collectively, the data suggest that most of the pyroxene compositional diversity that is represented by the tuffs and lavas was produced early in the history of the eruptive center and that compositions across this range were preserved or duplicated through much of its lifetime. Mineral compositions and thermometry of the multiple lavas suggest that unerupted magmas residual to the explosive phase of volcanism may have been stored at sustained, high temperatures subsequent to the explosive phase of volcanism. If so, such persistent high temperatures and large eruptive magma volumes likewise require an abundant and persistent supply of basalt magmas to the lower and/or mid-crust, consistent with the tectonic setting of a continental hotspot.
Resumo:
Indium Tin Oxide (ITO) is the most commonly used anode as a transparent electrode and more recently as an anode for organic photovoltaics (OPVs). However, there are significant drawbacks in using ITO which include high material costs, mechanical instability including brittleness and poor electrical properties which limit its use in low-cost flexible devices. We present initial results of poly(3-hexylthiophene): phenyl-C61-butyric acid methyl ester OPVs showing that an efficiency of 1.9% (short-circuit current 7.01 mA/cm2, open-circuit voltage 0.55 V, fill factor 0.49) can be attained using an ultra thin film of gold coated glass as the device anode. The initial I-V characteristics demonstrate that using high work function metals when the thin film is kept ultra thin can be used as a replacement to ITO due to their greater stability and better morphological control.
Resumo:
We have prepared p-n junction organic photovoltaic cells using an all solution processing method with poly(3-hexylthiophene) (P3HT) as the donor and phenyl-C 61-butyric acid methyl ester (PCBM) as the acceptor. Interdigitated donor/acceptor interface morphology was observed in the device processed with the lowest boiling point solvent for PCBM used in this study. The influences of different solvents on donor/acceptor morphology and respective device performance were investigated simultaneously. The best device obtained had characteristically rough interface morphology with a peak to valley value ∼15 nm. The device displayed a power conversion efficiency of 1.78%, an open circuit voltage (V oc) 0.44 V, a short circuit current density (J sc) 9.4 mA/cm 2 and a fill factor 43%.
Resumo:
Research on development of efficient passivation materials for high performance and stable quantum dot sensitized solar cells (QDSCs) is highly important. While ZnS is one of the most widely used passivation material in QDSCs, an alternative material based on ZnSe which was deposited on CdS/CdSe/TiO2 photoanode to form a semi-core/shell structure has been found to be more efficient in terms of reducing electron recombination in QDSCs in this work. It has been found that the solar cell efficiency was improved from 1.86% for ZnSe0 (without coating) to 3.99% using 2 layers of ZnSe coating (ZnSe2) deposited by successive ionic layer adsorption and reaction (SILAR) method. The short circuit current density (Jsc) increased nearly 1-fold (from 7.25 mA/cm2 to13.4 mA/cm2), and the open circuit voltage (Voc) was enhanced by 100 mV using ZnSe2 passivation layer compared to ZnSe0. Studies on the light harvesting efficiency (ηLHE) and the absorbed photon-to-current conversion efficiency (APCE) have revealed that the ZnSe coating layer caused the enhanced ηLHE at wavelength beyond 500 nm and a significant increase of the APCE over the spectrum 400−550 nm. A nearly 100% APCE was obtained with ZnSe2, indicating the excellent charge injection and collection process in the device. The investigation on charge transport and recombination of the device has indicated that the enhanced electron collection efficiency and reduced electron recombination should be responsible for the improved Jsc and Voc of the QDSCs. The effective electron lifetime of the device with ZnSe2 was nearly 6 times higher than ZnSe0 while the electron diffusion coefficient was largely unaffected by the coating. Study on the regeneration of QDs after photoinduced excitation has indicated that the hole transport from QDs to the reduced species (S2−) in electrolyte was very efficient even when the QDs were coated with a thick ZnSe shell (three layers). For comparison, ZnS coated CdS/CdSe sensitized solar cell with optimum shell thickness was also fabricated, which generated a lower energy conversion efficiency (η = 3.43%) than the ZnSe based QDSC counterpart due to a lower Voc and FF. This study suggests that ZnSe may be a more efficient passivation layer than ZnS, which is attributed to the type II energy band alignment of the core (CdS/CdSe quantum dots) and passivation shell (ZnSe) structure, leading to more efficient electron−hole separation and slower electron recombination.
Resumo:
Engineers and asset managers must often make decisions on how to best allocate limited resources amongst different interrelated activities, including repair, renewal, inspection, and procurement of new assets. The presence of project interdependencies and the lack of sufficient information on the true value of an activity often produce complex problems and leave the decision maker guessing about the quality and robustness of their decision. In this paper, a decision support framework for uncertain interrelated activities is presented. The framework employs a methodology for multi-criteria ranking in the presence of uncertainty, detailing the effect that uncertain valuations may have on the priority of a particular activity. The framework employs employing semi-quantitative risk measures that can be tailored to an organisation and enable a transparent and simple-to-use uncertainty specification by the decision maker. The framework is then demonstrated on a real world project set from a major Australian utility provider.
Resumo:
Aims To better understand the knowledge and behaviors of drunk-driving offenders relating to alcohol use and driving in the context of recently amended Chinese legislation, and to investigate the involvement of alcohol-use disorders. Design The study was a cross-sectional survey conducted in 2012. Setting and participants: Data were collected at a local jail and 101 participants were recruited while in detention. Measures Questionnaire items examined demographic characteristics as well as practices and knowledge relating to alcohol use and driving. The Alcohol Use Disorders Identification Test (AUDIT) was used to assess hazardous drinking levels. Findings Knowledge about the two legal limits for “drink driving” and for “drunk driving” was low, at 28.3% and 41.4%, respectively. AUDIT scores indicated that a substantial proportion of the offenders had high levels of alcohol-use disorders. Higher AUDIT scores were found among the least experienced drivers, those who lacked knowledge about the legal limits, and recidivist drunk drivers. Conclusions Limited awareness of legal alcohol limits might contribute to offending; high AUDIT scores suggest that hazardous drinking levels may also contribute. This study provides important information to assist in refining community education and prevention efforts.
Resumo:
Objective: Drink driving contributes to significant levels of injury and economic loss in China but is not well researched. This study examined knowledge, drink-driving practices, and alcohol misuse problems among general drivers in Yinchuan. The objectives were to gain a better understanding of drink driving in Yinchuan, identify areas that need to be addressed, and compare the results with a similar study in Guangzhou. Methods: This was a cross-sectional study with a survey designed to collect information on participants’ demographic characteristics and their knowledge and practices in relation to drinking and driving. The survey was composed of questions on knowledge and practices in relation to drink driving and was administered to a convenience sample of 406 drivers. Alcohol misuse problems were assessed by using the Alcohol Use Disorders Identification Test (AUDIT). Results: Males accounted for the main proportion of drivers sampled from the general population (“general drivers”). A majority of general drivers in both cities knew that drunk driving had become a criminal offense in 2011; however, knowledge of 2 legal blood alcohol concentration (BAC) limits was quite low. Fewer drivers in Yinchuan (22.6%) than in Guangzhou (27.9) reported having been stopped by police conducting breath alcohol testing at least once in the last 12 months. The mean AUDIT score in Yinchuan (M = 8.2) was higher than that in Guangzhou (M = 7.4), and the proportion of Yinchuan drivers with medium or higher alcohol misuse problems (31.2%) was correspondingly higher than in Guangzhou (23.1%). In Yinchuan, males had a significantly higher AUDIT score than females (t = 3.454, P < .001), similar to Guangzhou. Multiple regression analyses were conducted on potential predictors of the AUDIT score (age, gender, monthly income, education level, years licensed, and age started drinking). There were significant individual contributions of gender (beta = 0.173, P = .09) and age at which drinking started (beta = 0.141, P = .033), but the overall model for Yinchuan was not significant, unlike Guangzhou. Conclusions: The results show that there are shortfalls in knowledge of the legislation and how to comply with it and deficiencies in police enforcement. In addition, there was evidence of drink driving and drink riding at high levels in both cities. Recommendations are made to address these issues.
Resumo:
Social enterprise is important. Yet, there has been diverse understanding of the phenomenon in the literature. This paper attempts to make sense of the social enterprise phenomenon in the literature from a two-layer framework of two-by-two matrices. The first layer juxtaposes social enterprise against other organizations (a typology of organizations) and the second layer classifies different types of social enterprises (a typology of social enterprise). This framework may provide researchers with tools to develop a clear and comprehensive definition of social enterprise. For practitioners, the ability to recognize structures of different types of social enterprises may offer them guideline to design the appropriate business model to serve their purposes.
Resumo:
The question ‘is the planet full?’ is not new but it needs a critical assessment to provide a good answer. Obviously, the capacity of the planet should be evaluated in relation to the size and distribution of its human population and how relevant resources of the planet are used and managed. When we are discussing human population and resource management, multidimensional issues such as welfare, technologies and social changes are essential...