336 resultados para ORGANIC-SURFACES
Resumo:
Organic thin films have myriad of applications in biological interfaces, micro-electromechanical systems and organic electronics. Polyterpenol thin films fabricated via RF plasma polymerization have been substantiated as a promising gate insulating and encapsulating layer for organic optoelectronics, sacrificial place-holders for air gap fabrication as well as antibacterial coatings for medical implants. This study aims to understand the wettability and solubility behavior of the nonsynthetic polymer thin film, polyterpenol. Polyterpenol exhibited monopolar behavior, manifesting mostly electron donor properties, and was not water soluble due to the extensive intermolecular and intramolecular hydrogen bonds present. Hydrophobicity of polyterpenol surfaces increased for films fabricated at higher RF power attributed to reduction in oxygen containing functional groups and increased cross linking. The studies carried out under various deposition conditions vindicate that we could tailor the properties of the polyterpenol thin film for a given application.
Resumo:
The development of novel organic polymer thin films is essential for the advancement of many emerging fields including organic electronics and biomedical coatings. In this study, the effect of synthesis conditions, namely radio frequency (rf) deposition power, on the material properties of polyterpenol thin films derived from nonsynthetic environmentally friendly monomer was investigated. At lower deposition powers, the polyterpenol films preserved more of the original monomer constituents, such as hydroxy functional groups; however, they were also softer and more hydrophilic compared to polymers fabricated at higher power. Enhanced monomer fragmentation and consequent reduction in the presence of the polar groups in the structure of the high-power samples reduced their optical band gap value from 2.95 eV for 10 W to 2.64 eV for 100 W. Regardless of deposition power, all samples were found to be optically transparent with smooth, defect-free, and homogenous surfaces.
Resumo:
In the fields of organic electronics and biotechnology, applications for organic polymer thin films fabricated using low-temperature non-equilibrium plasma techniques are gaining significant attention because of the physical and chemical stability of thin films and the low cost of production. Polymer thin films were fabricated from non-synthetic terpinen-4-ol using radiofrequency polymerization (13.56 MHz) on low loss dielectric substrates and their permittivity properties were ascertained to determine potential applications for these organic films. Real and imaginary parts of permittivity as a function of frequency were measured using the variable angle spectroscopic ellipsometer. The real part of permittivity (k) was found to be between 2.34 and 2.65 in the wavelength region of 400–1100 nm, indicating a potential low-k material. These permittivity values were confirmed at microwave frequencies. Dielectric properties of polyterpenol films were measured by means of split post dielectric resonators (SPDRs) operating at frequencies of 10 GHz and 20 GHz. Permittivity increased for samples deposited at higher RF energy – from 2.65 (25 W) to 2.83 (75 W) measured by a 20-GHz SPDR and from 2.32 (25 W) to 2.53 (100 W) obtained using a 10-GHz SPDR. The error in permittivity measurement was predominantly attributed to the uncertainty in film thickness measurement.
Resumo:
The effect of material properties of an environmentally friendly, optically transparent dielectric material, polyterpenol, on the carrier transients within the pentacene-based double-layer MTM device was investigated. Polyterpenol films were RF plasma polymerised under varied process conditions, with resultant films differing in surface chemistry and morphology. Independent of type of polyterpenol, time-resolved EFISHG study of IZO/polyterpenol/pentacene/Au structures showed similar transient behaviour with carriers injected into pentacene from Au electrode only, confirming polyterpenol to be a suitable blocking layer for visualisation of single-species carrier transportation during charging and discharging under different bias conditions. Polyterpenol fabricated under higher input power show better promise due to higher chemical and thermal stability, improved uniformity, and absence of defects.
Resumo:
A non-synthetic polymer material, polyterpenol, was fabricated using a dry polymerization process namely RF plasma polymerization from an environmentally friendly monomer and its surface, optical and electrical properties investigated. Polyterpenol films were found to be transparent over the visible wavelength range, with a smooth surface with an average roughness of less than 0.4 nm and hardness of 0.4 GPa. The dielectric constant of 3.4 for polyterpenol was higher than that of the conventional polymer materials used in the organic electronic devices. The non-synthetic polymer material was then implemented as a surface modification of the gate insulator in field effect transistor (OFET) and the properties of the device were examined. In comparison to the similar device without the polymer insulating layer, the polyterpenol based OFET device showed significant improvements. The addition of the polyterpenol interlayer in the OFET shifted the threshold voltage significantly; + 20 V to -3 V. The presence of trapped charge was not observed in the polyterpenol interlayer. This assisted in the improvement of effective mobility from 0.012 to 0.021 cm 2/Vs. The switching property of the polyterpenol based OFET was also improved; 107 compared to 104. The results showed that the non-synthetic polyterpenol polymer film is a promising candidate of insulators in electronic devices.
Resumo:
Poly(linalool) thin films were fabricated using RF plasma polymerisation. All films were found to be smooth, defect-free surfaces with average roughness of 0.44 nm. The FTIR analysis of the polymer showed a notable reduction in –OH moiety and complete dissociation of C=C unsaturation compared to the monomer, and presence of a ketone band absent from the spectrum of the monomer. Poly(linalool) were characterised by chain branching and a large quantity of short polymer chains. Films were optically transparent, with refractive index and extinction coefficient of 1.55 and 0.001 (at 500 nm) respectively, indicating a potential application as an encapsulating (protective) coating for circuit boards. The optical band gap was calculated to be 2.82 eV, which is in the semiconducting energy gap region.
Resumo:
Recent advancements in the area of organic polymer applications demand novel and advanced materials with desirable surface, optical and electrical properties to employ in emerging technologies. This study examines the fabrication and characterization of polymer thin films from non-synthetic Terpinen-4-ol monomer using radio frequency plasma polymerization. The optical properties, thickness and roughness of the thin films were studied in the wavelength range 200–1000 nm using ellipsometry. The polymer thin films of thickness from 100 nm to 1000 nm were fabricated and the films exhibited smooth and defect-free surfaces. At 500 nm wavelength, the refractive index and extinction coefficient were found to be 1.55 and 0.0007 respectively. The energy gap was estimated to be 2.67 eV, the value falling into the semiconducting Eg region. The obtained optical and surface properties of Terpinen-4-ol based films substantiate their candidacy as a promising low-cost material with potential applications in electronics, optics, and biomedical industries.
Resumo:
Persistent organic pollutants (POPs) including polybrominated diphenyl ethers (PBDEs); organochlorine pesticides (OCPs); and polychlorinated biphenyls (PCBs) persist in the environment, bioaccumulate, and pose a risk of causing adverse human health effects. Typically, exposure assessments undertaken by modeling existing intake data underestimate the concentrations of these chemicals in infants. This study aimed to determine concentrations of POPs in infant foods, assess exposure via dietary intake and compare this to historical exposure. Fruit purees, meat and vegetables, dairy desserts, cereals and jelly foods (n = 33) purchased in 2013 in Brisbane, Australia were analyzed. For OCPs and PCBs, concentrations ranged up to 95 pg/g fw and for PBDEs up to 32 pg/g fw with most analytes below the limit of detection. Daily intake is dependent on type and quantity of foods consumed. Consumption of a 140 g meal would result in intake ranging from 0 to 4.2 ng/day, 4.4 ng/day and 13.3 ng/day, for OCPs, PBDEs and PCBs, respectively. PBDEs were detected in 3/33 samples, OCPs in 9/33 samples and PCBs in 13/33 samples. Results from this study indicate exposure for infants via dietary (in contrast to dust and breast milk) intake in Australia contribute only a minor component to total exposure.
Resumo:
Assessing blood concentration of persistent organic pollutants (POPs) in infants is difficult due to the ethical and practical difficulties in obtaining sufficient quantities of blood. To determine whether measuring POPs in faeces might reflect blood concentration during infancy, we measured the concentrations of a range of POPs (i.e. polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) and organochlorine pesticides (OCPs)) in a pilot study using matched breast milk and infant faecal samples obtained from ten mother-child pairs. All infants were breast fed, with 8 of them also receiving solid food at the time of faecal sampling. In this small dataset faecal concentrations (range 0.01-41ngg-1 lipid) are strongly associated with milk concentrations (range 0.02-230ngg-1 lipid). Associations with other factors generally could not be detected in this dataset, with the exception of a small effect of age or growth. Different sources (external or internal) of exposure appeared to directly influence faecal concentrations of different chemicals based on different inter-individual variability in the faeces-to-milk concentration ratio Rfm. Overall, the matrix of faeces as an external measure of internal exposure in infants looks promising for some chemicals and is worth assessing further in larger datasets.
Resumo:
The world is facing an energy crisis due to exponential population growth and limited availability of fossil fuels. Over the last 20 years, carbon, one of the most abundant materials found on earth, and its allotrope forms such as fullerenes, carbon nanotubes and graphene have been proposed as sources of energy generation and storage because of their extraordinary properties and ease of production. Various approaches for the synthesis and incorporation of carbon nanomaterials in organic photovoltaics and supercapacitors have been reviewed and discussed in this work, highlighting their benefits as compared to other materials commonly used in these devices. The use of fullerenes, carbon nanotubes and graphene in organic photovoltaics and supercapacitors is described in detail, explaining how their remarkable properties can enhance the efficiency of solar cells and energy storage in supercapacitors. Fullerenes, carbon nanotubes and graphene have all been included in solar cells with interesting results, although a number of problems are still to be overcome in order to achieve high efficiency and stability. However, the flexibility and the low cost of these materials provide the opportunity for many applications such as wearable and disposable electronics or mobile charging. The application of carbon nanotubes and graphene to supercapacitors is also discussed and reviewed in this work. Carbon nanotubes, in combination with graphene, can create a more porous film with extraordinary capacitive performance, paving the way to many practical applications from mobile phones to electric cars. In conclusion, we show that carbon nanomaterials, developed by inexpensive synthesis and process methods such as printing and roll-to-roll techniques, are ideal for the development of flexible devices for energy generation and storage – the key to the portable electronics of the future.
Resumo:
This work reports on the fabrication of a superhydrophobic nylon textile based on the organic charge transfer complex CuTCNAQ (TCNAQ = 11,11,12,12-tetracyanoanthraquinodimethane). The nylon fabric that is metallized with copper undergoes a spontaneous chemical reaction with TCNAQ dissolved in acetonitrile to form nanorods of CuTCNAQ that are intertwined over the entire surface of the fabric. This creates the necessary micro and nanoscale roughness that is required for the Cassie-Baxter state thereby achieving a superhydrophobic/superoleophilic surface without the need for a fluorinated surface. The material is characterised with SEM, FT-IR and XPS spectroscopy and investigated for its ability to separate oil and water in two modes, namely under gravity and as an absorbent. It is found that the fabric can separate dichloromethane, olive oil and crude oil from water and in fact reduce the water content of the oil during the separation process. The fabric is reusable and tolerant to conditions such as seawater, hydrochloric acid and extensive time periods on the shelf. Given that CuTCNAQ is a copper based semiconductor may also open up the possibility of other applications in areas such as photocatalysis and antibacterial applications.
Spray deposition of exfoliated MoS2 flakes as hole transport layer in perovskite-based photovoltaics
Resumo:
We propose the use of solution-processed molybdenum disulfide (MoS2) flakes as hole transport layer (HTL) for metal-organic perovskite solar cells. MoS2 bulk crystals are exfoliated in 2-propanol and deposited on perovskite layers by spray coating. We fabricated cells with glass/FTO/compact-TiO2/mesoporous-TiO2/CH3NH3PbI3/spiro- OMeTAD/Au structure and cells with the same structure but with MoS2 flakes as HTL instead of spiro-OMeTAD, the most widely used HTL. The electrical characterization of the cells with MoS2 as HTL show promising power conversion efficiency -η- of 3.9% with respect to cells with pristine spiro-OMeTAD (η=3.1%). Endurance test on 800-hour shelf life has shown higher stability for the MoS2–based cells (ΔPCE/PCE=-17%) with respect to the doped spiro-OMeTAD-based one (ΔPCE/PCE =-45%). Further improvements are expected with the optimization of the MoS2 deposition process
Resumo:
Heavy metals build-up on urban road surfaces is a complex process and influenced by a diverse range of factors. Although numerous research studies have been conducted in the area of heavy metals build-up, limited research has been undertaken to rank these factors in terms of their influence on the build-up process. This results in limitations in the identification of the most critical factor/s for accurately estimating heavy metal loads and for designing effective stormwater treatment measures. The research study undertook an in-depth analysis of the factors which influence heavy metals build-up based on data generated from a number of different geographical locations around the world. Traffic volume was found to be the highest ranked factor in terms of influencing heavy metals build-up while land use was ranked the second. Proximity to arterial roads, antecedent dry days and road surface roughness has a relatively lower ranking. Furthermore, the study outcomes advances the conceptual understanding of heavy metals build-up based on the finding that with increasing traffic volume, total heavy metal build-up load increases while the variability decreases. The outcomes from this research study are expected to contribute to more accurate estimation of heavy metals build-up loads leading to more effective stormwater treatment design.
Resumo:
In the context of increasing threats to the sensitive marine ecosystem by toxic metals, this study investigated the metal build-up on impervious surfaces specific to commercial seaports. The knowledge generated in this study will contribute to managing toxic metal pollution of the marine ecosystem. The study found that inter-modal operations and main access roadway had the highest loads followed by container storage and vehicle marshalling sites, while the quay line and short term storage areas had the lowest. Additionally, it was found that Cr, Al, Pb, Cu and Zn were predominantly attached to solids, while significant amount of Cu, Pb and Zn were found as nutrient complexes. As such, treatment options based on solids retention can be effective for some metal species, while ineffective for other species. Furthermore, Cu and Zn are more likely to become bioavailable in seawater due to their strong association with nutrients. Mathematical models to replicate the metal build-up process were also developed using experimental design approach and partial least square regression. The models for Cr and Pb were found to be reliable, while those for Al, Zn and Cu were relatively less reliable, but could be employed for preliminary investigations.
Resumo:
The adsorption of proteins at the interface between two immiscible electrolyte solutions has been found to be key to their bioelectroactivity at such interfaces. Combined with interfacial complexation of organic phase anions by cationic proteins, this adsorption process may be exploited to achieve nanomolar protein detection. In this study, replica exchange molecular dynamics simulations have been performed to elucidate for the first time the molecular mechanism of adsorption and subsequent unfolding of hen egg white lysozyme at low pH at a polarized 1,2-dichloroethane/water interface. The unfolding of lysozyme was observed to occur as soon as it reaches the organic−aqueous interface,which resulted in a number of distinct orientations at the interface. In all cases, lysozyme interacted with the organic phase through regions rich in nonpolar amino acids, such that the side chains are directed toward the organic phase, whereas charged and polar residues were oriented toward the aqueous phase. By contrast, as expected, lysozyme in neat water at low pH does not exhibit significant structural changes. These findings demonstrate the key influence of the organic phase upon adsorption of lysozyme under the influence of an electric field, which results in the unfolding of its structure.