566 resultados para Modeling Geomorphological Processes
Resumo:
In 2010 Berezhkovskii and coworkers introduced the concept of local accumulation time (LAT) as a finite measure of the time required for the transient solution of a reaction diffusion equation to effectively reach steady state(Biophys J. 99, L59 (2010); Phys Rev E. 83, 051906 (2011)). Berezhkovskii’s approach is a particular application of the concept of mean action time (MAT) that was introduced previously by McNabb (IMA J Appl Math. 47, 193 (1991)). Here, we generalize these previous results by presenting a framework to calculate the MAT, as well as the higher moments, which we call the moments of action. The second moment is the variance of action time; the third moment is related to the skew of action time, and so on. We consider a general transition from some initial condition to an associated steady state for a one–dimensional linear advection–diffusion–reaction partial differential equation(PDE). Our results indicate that it is possible to solve for the moments of action exactly without requiring the transient solution of the PDE. We present specific examples that highlight potential weaknesses of previous studies that have considered the MAT alone without considering higher moments. Finally, we also provide a meaningful interpretation of the moments of action by presenting simulation results from a discrete random walk model together with some analysis of the particle lifetime distribution. This work shows that the moments of action are identical to the moments of the particle lifetime distribution for certain transitions.
Resumo:
This paper describes how a team from a large company, when faced with a challenge to develop new customers in fast growing international markets, carried out the exploration of the needs of new clients in the largely unexplored market space of a developing country. This team used design methods and processes to identify the latent needs of new customers in situations of major economic, geographical, cultural and financial constraints. This encapsulation of the life experiences of potential customers is used extensively in some new product development, but is largely novel to business practices and in processes of developing new services. This research links with the sub-theme of discovering creativity in necessity and highlights the potential benefits of design methodologies to create new possibilities for better accessibility of the company’s products to new clients, with future implications for organizational strategy. The overall theme of Design for the Colloquium encourages exploration of the ways and means of developing new ideas for new business with better outcomes, using design concepts and design technologies.
Resumo:
Exploiting wind-energy is one possible way to extend flight duration for Unmanned Arial Vehicles. Wind-energy can also be used to minimise energy consumption for a planned path. In this paper, we consider uncertain time-varying wind fields and plan a path through them. A Gaussian distribution is used to determine uncertainty in the Time-varying wind fields. We use Markov Decision Process to plan a path based upon the uncertainty of Gaussian distribution. Simulation results that compare the direct line of flight between start and target point and our planned path for energy consumption and time of travel are presented. The result is a robust path using the most visited cell while sampling the Gaussian distribution of the wind field in each cell.
Resumo:
In this work, a Langevin dynamics model of the diffusion of water in articular cartilage was developed. Numerical simulations of the translational dynamics of water molecules and their interaction with collagen fibers were used to study the quantitative relationship between the organization of the collagen fiber network and the diffusion tensor of water in model cartilage. Langevin dynamics was used to simulate water diffusion in both ordered and partially disordered cartilage models. In addition, an analytical approach was developed to estimate the diffusion tensor for a network comprising a given distribution of fiber orientations. The key findings are that (1) an approximately linear relationship was observed between collagen volume fraction and the fractional anisotropy of the diffusion tensor in fiber networks of a given degree of alignment, (2) for any given fiber volume fraction, fractional anisotropy follows a fiber alignment dependency similar to the square of the second Legendre polynomial of cos(θ), with the minimum anisotropy occurring at approximately the magic angle (θMA), and (3) a decrease in the principal eigenvalue and an increase in the transverse eigenvalues is observed as the fiber orientation angle θ progresses from 0◦ to 90◦. The corresponding diffusion ellipsoids are prolate for θ < θMA, spherical for θ ≈ θMA, and oblate for θ > θMA. Expansion of the model to include discrimination between the combined effects of alignment disorder and collagen fiber volume fraction on the diffusion tensor is discussed.
Resumo:
Starting from the vantage point that explaining success at creating a venture should be the unique contribution—or at least one unique contribution—of entrepreneurship research, we argue that this success construct has not yet been adequately defined an operationalized. We thus offer suggestions for more precise conceptualization and measurement of this central construct. Rather than regarding various success proxies used in prior research as poor operationalizations of success we argue that they represent other important aspects of the venture creation process: engagement, persistence and progress. We hold that in order to attain a better understanding of venture creation these constructs also need to be theoretically defined. Further, their respective drivers need to be theorized and tested separately. We suggest theoretical definitions of each. We then develop and test hypotheses concerning how human capital, venture idea novelty and business planning has different impact on the different assessments of the process represented by engagement, persistence, progress and success. The results largely confirm the stated hypotheses, suggesting that the conceptual and empirical approach we are suggesting is a path towards improved understanding of the central entrepreneurship phenomenon of new venture creation.
Resumo:
The overall aim of this project was to contribute to existing knowledge regarding methods for measuring characteristics of airborne nanoparticles and controlling occupational exposure to airborne nanoparticles, and to gather data on nanoparticle emission and transport in various workplaces. The scope of this study involved investigating the characteristics and behaviour of particles arising from the operation of six nanotechnology processes, subdivided into nine processes for measurement purposes. It did not include the toxicological evaluation of the aerosol and therefore, no direct conclusion was made regarding the health effects of exposure to these particles. Our research included real-time measurement of sub, and supermicrometre particle number and mass concentration, count median diameter, and alveolar deposited surface area using condensation particle counters, an optical particle counter, DustTrak photometer, scanning mobility particle sizer, and nanoparticle surface area monitor, respectively. Off-line particle analysis included scanning and transmission electron microscopy, energy-dispersive x-ray spectrometry, and thermal optical analysis of elemental carbon. Sources of fibrous and non-fibrous particles were included.
Resumo:
The author aims at developing a better understanding of unstructured strategic decision making processes and the conditions for achieving successful decision outcomes. Specifically he investigates the processes used to make CRE (Corporate Real Estate) decisions. To reveal the fundamental differences between CRE decision-making in practice and the prescriptive ‘best practice’ advocated in the CRE literature, a study of seven leading Italian management consulting firms is undertaken addressing the aspects of content and process of decisions. This research makes its primary contribution by identifying the importance and difficulty of finding the right balance between problem complexity, process richness and cohesion to ensure a decision-making process that is sufficiently rich and yet quick enough to deliver a prompt outcome. While doing so, the study also provides more empirical evidence to some of the most established theories of decision-making, while reinterpreting their mono-dimensional arguments in a multi-dimensional model of successful decision-making.
Resumo:
The effect of resource management on the building design process directly influences the development cycle time and success of construction projects. This paper presents the information constraint net (ICN) to represent the complex information constraint relations among design activities involved in the building design process. An algorithm is developed to transform the information constraints throughout the ICN into a Petri net model. A resource management model is developed using the ICN to simulate and optimize resource allocation in the design process. An example is provided to justify the proposed model through a simulation analysis of the CPN Tools platform in the detailed structural design. The result demonstrates that the proposed approach can obtain the resource management and optimization needed for shortening the development cycle and optimal allocation of resources.
Resumo:
Traditional shading design principles guide the vertical and horizontal orientation of fins, louvres and awnings being applied to orthogonal planar façades. Due to doubly curved envelopes characterising many contemporary designs, these rules of thumb are now not always applicable. Operable blinds attempt to regulate the fluctuating luminance of daylight and aid in shading direct sunlight. Mostly they remain closed, as workers are commonly too preoccupied to continually adjust them so a reliance on electrically powered lights remains a preference. To remedy these problems, the idea of what it is to sustainable enclose space is reconsidered through the geometric and kinetic optimisation of a parametric skin, with sunlight responsive modules that regulate interior light levels. This research concludes with an optimised design and also defines some unique metrics to gauge the design’s performance in terms of, the amount of exterior unobstructed view, its ability to shade direct sunlight and, its daylight glare probability.
Resumo:
Cell invasion involves a population of cells that migrate along a substrate and proliferate to a carrying capacity density. These two processes, combined, lead to invasion fronts that move into unoccupied tissues. Traditional modelling approaches based on reaction–diffusion equations cannot incorporate individual–level observations of cell velocity, as information propagates with infinite velocity according to these parabolic models. In contrast, velocity jump processes allow us to explicitly incorporate individual–level observations of cell velocity, thus providing an alternative framework for modelling cell invasion. Here, we introduce proliferation into a standard velocity–jump process and show that the standard model does not support invasion fronts. Instead, we find that crowding effects must be explicitly incorporated into a proliferative velocity–jump process before invasion fronts can be observed. Our observations are supported by numerical and analytical solutions of a novel coupled system of partial differential equations, including travelling wave solutions, and associated random walk simulations.
Resumo:
Software development and Web site development techniques have evolved significantly over the past 20 years. The relatively young Web Application development area has borrowed heavily from traditional software development methodologies primarily due to the similarities in areas of data persistence and User Interface (UI) design. Recent developments in this area propose a new Web Modeling Language (WebML) to facilitate the nuances specific to Web development. WebML is one of a number of implementations designed to enable modeling of web site interaction flows while being extendable to accommodate new features in Web site development into the future. Our research aims to extend WebML with a focus on stigmergy which is a biological term originally used to describe coordination between insects. We see design features in existing Web sites that mimic stigmergic mechanisms as part of the UI. We believe that we can synthesize and embed stigmergy in Web 2.0 sites. This paper focuses on the sub-topic of site UI design and stigmergic mechanism designs required to achieve this.
Resumo:
What does a dance group in Benin that mixes contemporary and ethnic dancing have in common with Mongolian felt producers that want to enter the design market in Europe? These are both examples of learning processes in Creative Industries initiatives in developing countries. Following the concept of sustainable development, I argue that the challenge for developing countries in contemporary society is to meet the very real need of people for economic development and opportunities for income generation, while at the same time avoiding unintended and unwanted consequences of economic development and globalisation. The concept of the Creative Industries may be a way to promote a development that is sustainable and avoids social exclusion of groups-at-risk. In line with this, I argue that the Creative Industries sector could, in fact, link economic development and the continuation and evolution of local traditions and cultural heritage. A pressing question then is: how can education and learning contribute to creating a context in which talent can flourish? This study aims to provide a comprehensive analysis of the research problem of this thesis: what elements are conducive for individual learning processes in creative development initiatives? In this, I argue that it is crucial to determine what ingredients and characteristics contribute to making these initiatives successful, that is, to meet their specific goals, in a developing context. This is explored through a staged analysis: an overview of quantitative data, an inventory and comparative case studies and, finally, the description and analysis of two in-depth case studies – felt design in Mongolia (Asia) and dance in Benin (Africa), in which I was an observer of the action phase of the local interventions. The analysis culminates in practice-related outcomes related to the operation of creative development initiatives, as well as the contribution to the academic debate on issues like the cultural gap between developed and developing countries, transformative learning and the connection of learning spaces.
Resumo:
The Sudbury Basin is a non-cylindrical fold basin occupying the central portion of the Sudbury Impact Structure. The impact structure lends itself excellently to explore the structural evolution of continental crust containing a circular region of long-term weakness. In a series of scaled analogue experiments various model crustal configurations were shortened horizontally at a constant rate. In mechanically weakened crust, model basins formed that mimic several first-order structural characteristics of the Sudbury Basin: (1) asymmetric, non-cylindrical folding of the Basin, (2) structures indicating concentric shortening around lateral basin termini and (3) the presence of a zone of strain concentration near the hinge zones of model basins. Geometrically and kinematically this zone corresponds to the South Range Shear Zone of the Sudbury Basin. According to our experiments, this shear zone is a direct mechanical consequence of basin formation, rather than the result of thrusting following folding. Overall, the models highlight the structurally anomalous character of the Sudbury Basin within the Paleoproterozoic Eastern Penokean Orogen. In particular, our models suggest that the Basin formed by pure shear thickening of crust, whereas transpressive deformation prevailed elsewhere in the orogen. The model basin is deformed by thickening and non-cylindrical synformal buckling, while conjugate transpressive shear zones propagated away from its lateral tips. This is consistent with pure shear deformation of a weak circular inclusion in a strong matrix. The models suggest that the Sudbury Basin formed as a consequence of long-term weakening of the upper crust by meteorite impact.