319 resultados para Intelligent vehicle highway systems
Resumo:
In Australia, railway systems play a vital role in transporting the sugarcane crop from farms to mills. In this paper, a novel job shop approach is proposed to create a more efficient integrated harvesting and sugarcane transport scheduling system to reduce the cost of sugarcane transport. There are several benefits that can be attained by treating the train scheduling problem as a job shop problem. Job shop is generic and suitable for all trains scheduling problems. Job shop technique prevents operating two trains on one section at the same time because it considers that the section or the machine is unique. This technique is more promising to find better solutions in reasonable computation times.
Resumo:
Accurately quantifying total greenhouse gas emissions (e.g. methane) from natural systems such as lakes, reservoirs and wetlands requires the spatial-temporal measurement of both diffusive and ebullitive (bubbling) emissions. Traditional, manual, measurement techniques provide only limited localised assessment of methane flux, often introducing significant errors when extrapolated to the whole-of-system. In this paper, we directly address these current sampling limitations and present a novel multiple robotic boat system configured to measure the spatiotemporal release of methane to atmosphere across inland waterways. The system, consisting of multiple networked Autonomous Surface Vehicles (ASVs) and capable of persistent operation, enables scientists to remotely evaluate the performance of sampling and modelling algorithms for real-world process quantification over extended periods of time. This paper provides an overview of the multi-robot sampling system including the vehicle and gas sampling unit design. Experimental results are shown demonstrating the system’s ability to autonomously navigate and implement an exploratory sampling algorithm to measure methane emissions on two inland reservoirs.
Resumo:
Autonomous underwater vehicles (AUVs) are becoming commonplace in the study of inshore coastal marine habitats. Combined with shipboard systems, scientists are able to make in-situ measurements of water column and benthic properties. In CSIRO, autonomous gliders are used to collect water column data, while surface vessels are used to collect bathymetry information through the use of swath mapping, bottom grabs, and towed video systems. Although these methods have provided good data coverage for coastal and deep waters beyond 50m, there has been an increasing need for autonomous in-situ sampling in waters less than 50m deep. In addition, the collection of benthic and water column data has been conducted separately, requiring extensive post-processing to combine data streams. As such, a new AUV was developed for in-situ observations of both benthic habitat and water column properties in shallow waters. This paper provides an overview of the Starbug X AUV system, its operational characteristics including vision-based navigation and oceanographic sensor integration.
Resumo:
With the development of wearable and mobile computing technology, more and more people start using sleep-tracking tools to collect personal sleep data on a daily basis aiming at understanding and improving their sleep. While sleep quality is influenced by many factors in a person’s lifestyle context, such as exercise, diet and steps walked, existing tools simply visualize sleep data per se on a dashboard rather than analyse those data in combination with contextual factors. Hence many people find it difficult to make sense of their sleep data. In this paper, we present a cloud-based intelligent computing system named SleepExplorer that incorporates sleep domain knowledge and association rule mining for automated analysis on personal sleep data in light of contextual factors. Experiments show that the same contextual factors can play a distinct role in sleep of different people, and SleepExplorer could help users discover factors that are most relevant to their personal sleep.