404 resultados para Higher modes
Resumo:
This paper is a discussion of the use of the SOLO (Structure of Observed Learning Outcomes) Taxonomy (Biggs & Collis, 1982, 1989; Biggs, 1991, 1992a, 1992b; Boulton‐Lewis, 1992, 1994) as a means of developing and assessing higher order thinking in Higher Education. It includes a summary of the research into its use to date as an instrument to find out what students know and believe about their own learning, to assess entering knowledge in a discipline, to present examples of structural organization of knowledge in a discipline, to provide models of levels of desired learning outcomes, and in particular to assess learning outcomes. A proposal is made for further research.
Resumo:
The introduction of online delivery platforms such as learning management systems (LMS) in tertiary education has changed the methods and modes of curriculum delivery and communication. While course evaluation methods have also changed from paper-based in-class-administered methods to largely online-administered methods, the data collection instruments have remained unchanged. This paper reports on a small exploratory study of two tertiary-level courses. The study investigated why design of the instruments and methods to administer surveys in the courses are ineffective measures against the intrinsic characteristics of online learning. It reviewed the students' response rates of the conventional evaluations for the courses over an eight-year period. It then compared a newly developed online evaluation and the conventional methods over a two-year period. The results showed the response rates with the new evaluation method increased by more than 80% from the average of the conventional evaluations (below 30%), and the students' written feedback was more detailed and comprehensive than in the conventional evaluations. The study demonstrated the possibility that the LMS-based learning evaluation can be effective and efficient in terms of the quality of students' participation and engagement in their learning, and for an integrated pedagogical approach in an online learning environment.
Resumo:
Lave and Wenger’s legitimate peripheral participation is an important aspect of online learning environments. It is common for teachers to scaffold varying levels of online participation in Web 2.0 contexts, such as online discussion forums and blogs. This study argues that legitimate peripheral participation needs to be redefined in response to students’ decentralised multiple interactions and non-linear engagement in hyperlinked learning environments. The study examines students’ levels of participation in online learning through theories of interactivity, distinguishing between five levels of student participation in the context of a first-year university course delivered via a learning management system. The data collection was implemented through two instruments: i) a questionnaire about students’ interactivity perception in the online reflective learning (n = 238) and then ii) an open discussion on the reason for the diverse perceptions of interactivity (n = 34). The study findings indicate that student participants, other than those who were active, need high levels of teacher or moderator intervention, which better enables legitimate peripheral participation to occur in online learning contexts.
Resumo:
This study documents and theorises the consequences of the 2003 Australian Government Reform Package focussed on learning and teaching in Higher Education during the period 2002 to 2008. This is achieved through the perspective of program evaluation and the methodology of illuminative evaluation. The findings suggest that the three national initiatives of that time, Learning and Teaching Performance Fund (LTPF), Australian Learning and Teaching Council (ALTC), and Australian Universities Quality Agency (AUQA), were successful in repositioning learning and teaching as a core activity in universities. However, there were unintended consequences brought about by international policy borrowing, when the short-lived nature of LTPF suggests a legacy of quality compliance rather than one of quality enrichment.
Resumo:
Micrometre-sized MgB2 crystals of varying quality, synthesized at low temperature and autogeneous pressure, are compared using a combination of Raman and Infra-Red (IR) spectroscopy. These data, which include new peak positions in both spectroscopies for high quality MgB2, are interpreted using DFT calculations on phonon behaviour for symmetry-related structures. Raman and IR activity additional to that predicted by point group analyses of the P6/mmm symmetry are detected. These additional peaks, as well as the overall shapes of calculated phonon dispersion (PD) models are explained by assuming a double super-lattice, consistent with a lower symmetry structure for MgB2. A 2x super-lattice in the c-direction allows a simple correlation of the pair breaking energy and the superconducting gap by activation of corresponding acoustic frequencies. A consistent physical interpretation of these spectra is obtained when the position of a phonon anomaly defines a super-lattice modulation in the a-b plane.
Resumo:
Building rich and authentic learning experiences in the STEM classroom, is a challenge for many educators within Higher Education. While many Higher Education Institutions have embraced the need to transform current teaching and learning practices and include a range of online tools, this has often been met with some resistance and approaches that do not always recognise the academic who are a critical component to the success of the transformational process. Over the last decade the Internet has evolved from being a tool used by a few dedicated educators to one that is being used by the majority of educators. However, what is important is how this great resource is used in teaching and learning to allow students to build knowledge. The ability for students to construct knowledge and engage in higher order thinking skills is at the heart of educational practices, and building a community of learners has the potential to support these practices, especially within STEM education. This paper explores the relationship between students and an academic teaching in a technology rich STEM learning environment and their adoption of social community and shared tools. In particular the paper reports on the critical components that make a successful community of learners and the educational tools and approaches that were successfully used to enhance the student learning experience in a STEM classroom.
Resumo:
This chapter will consider pedagogic change in Higher Education from the perspective of an Assistant Dean (Teaching and Learning) and one member of their leadership team with particular focus on reflective writing in their courses. The discussion will focus on leadership for the development of teaching capability for reflective writing development and implications for quality assurance of teaching and learning across faculties of a leading comprehensive University. The authors will present and contrast the experiences and challenges of developing teaching approaches for reflective writing across the discipline of teacher education. The chapter will argue a position for the establishment of a framework of distributed leadership that supports effective pedagogical change management generally and with specific reference to reflective writing.
Resumo:
This paper describes the electrocatalytic oxidation of ascorbic acid (AA) in phosphate buffer solution by the immobilized citrate capped gold nanoparticles (AuNPs) on 1,6-hexanedithiol (HDT) modified Au electrode. X-ray photoelectron spectrum (XPS) of HDT suggests that it forms a monolayer on Au surface through one of the two single bondSH groups and the other single bondSH group is pointing away from the electrode surface. The free single bondSH groups of HDT were used to covalently attach colloidal AuNPs. The covalent attachment of AuNPs on HDT monolayer was confirmed from the observed characteristic carboxylate ion stretching modes of citrate attached with AuNPs in the infra-red reflection absorption spectrum (IRRAS) in addition to a higher reductive desorption charges obtained for AuNPs immobilized on HDT modified Au (Au/HDT/AuNPs) electrode in 0.1 M KOH when compared to HDT modified Au (Au/HDT) electrode. The electron transfer reaction of [Fe(CN)6]4−/3− was markedly hindered at the HDT modified Au (Au/HDT) electrode while it was restored with a peak separation of 74 mV after the immobilization of AuNPs on Au/HDT (Au/HDT/AuNPs) electrode indicating a good electronic communication between the immobilized AuNPs and the underlying bulk Au electrode through a HDT monolayer. The Cottrell slope obtained from the potential-step chronoamperometric measurements for the reduction of ferricyanide at Au/HDT/AuNPs was higher than that of bare Au electrode indicating the increased effective surface area of AuNPs modified electrode. The Au/HDT/AuNPs electrode exhibits excellent electrocatalytic activity towards the oxidation of ascorbic acid (AA) by enhancing the oxidation peak current to more than two times with a 210 mV negative shift in the oxidation potential when compared to a bare Au electrode. The standard heterogeneous electron transfer rate constant (ks) calculated for AA oxidation at Au/HDT/AuNPs electrode was 5.4 × 10−3 cm s−1. The oxidation peak of AA at Au/HDT/AuNPs electrode was highly stable upon repeated potential cycling. Linear calibration plot was obtained for AA over the concentration range of 1–110 μM with a correlation coefficient of 0.9950. The detection limit of AA was found to be 1 μM. The common physiological interferents such as glucose, oxalate ions and urea do not show any interference within the detection limit of AA. The selectivity of the AuNPs modified electrode was illustrated by the determination of AA in the presence of uric acid.
Resumo:
Heart rate variability (HRV) refers to the regulation of the sinoatrial node, the natural pacemaker of the heart by the sympathetic and parasympathetic branches of the autonomic nervous system. HRV analysis is an important tool to observe the heart’s ability to respond to normal regulatory impulses that affect its rhythm. Like many bio-signals, HRV signals are non-linear in nature. Higher order spectral analysis (HOS) is known to be a good tool for the analysis of non-linear systems and provides good noise immunity. A computer-based arrhythmia detection system of cardiac states is very useful in diagnostics and disease management. In this work, we studied the identification of the HRV signals using features derived from HOS. These features were fed to the support vector machine (SVM) for classification. Our proposed system can classify the normal and other four classes of arrhythmia with an average accuracy of more than 85%.
Resumo:
Interpolation techniques for spatial data have been applied frequently in various fields of geosciences. Although most conventional interpolation methods assume that it is sufficient to use first- and second-order statistics to characterize random fields, researchers have now realized that these methods cannot always provide reliable interpolation results, since geological and environmental phenomena tend to be very complex, presenting non-Gaussian distribution and/or non-linear inter-variable relationship. This paper proposes a new approach to the interpolation of spatial data, which can be applied with great flexibility. Suitable cross-variable higher-order spatial statistics are developed to measure the spatial relationship between the random variable at an unsampled location and those in its neighbourhood. Given the computed cross-variable higher-order spatial statistics, the conditional probability density function (CPDF) is approximated via polynomial expansions, which is then utilized to determine the interpolated value at the unsampled location as an expectation. In addition, the uncertainty associated with the interpolation is quantified by constructing prediction intervals of interpolated values. The proposed method is applied to a mineral deposit dataset, and the results demonstrate that it outperforms kriging methods in uncertainty quantification. The introduction of the cross-variable higher-order spatial statistics noticeably improves the quality of the interpolation since it enriches the information that can be extracted from the observed data, and this benefit is substantial when working with data that are sparse or have non-trivial dependence structures.