405 resultados para Gallaudet, Edward.
Resumo:
Recently there has been significant interest of researchers and practitioners on the use of Bluetooth as a complementary transport data. However, literature is limited with the understanding of the Bluetooth MAC Scanner (BMS) based data acquisition process and the properties of the data being collected. This paper first provides an insight on the BMS data acquisition process. Thereafter, it discovers the interesting facts from analysis of the real BMS data from both motorway and arterial networks of Brisbane, Australia. The knowledge gained is helpful for researchers and practitioners to understand the BMS data being collected which is vital to the development of management and control algorithms using the data.
Resumo:
This research aims to develop a reliable density estimation method for signalised arterials based on cumulative counts from upstream and downstream detectors. In order to overcome counting errors associated with urban arterials with mid-link sinks and sources, CUmulative plots and Probe Integration for Travel timE estimation (CUPRITE) is employed for density estimation. The method, by utilizing probe vehicles’ samples, reduces or cancels the counting inconsistencies when vehicles’ conservation is not satisfied within a section. The method is tested in a controlled environment, and the authors demonstrate the effectiveness of CUPRITE for density estimation in a signalised section, and discuss issues associated with the method.
Resumo:
The existence of Macroscopic Fundamental Diagram (MFD), which relates space-mean density and flow, has been shown in urban networks under homogeneous traffic conditions. Since MFD represents the area-wide network traffic performances, studies on perimeter control strategies and an area traffic state estimation utilizing the MFD concept has been reported. One of the key requirements for well-defined MFD is the homogeneity of the area-wide traffic condition with links of similar properties, which is not universally expected in real world. For the practical application of the MFD concept, several researchers have identified the influencing factors for network homogeneity. However, they did not explicitly take the impact of drivers’ behaviour and information provision into account, which has a significant impact on simulation outputs. This research aims to demonstrate the effect of dynamic information provision on network performance by employing the MFD as a measurement. A microscopic simulation, AIMSUN, is chosen as an experiment platform. By changing the ratio of en-route informed drivers and pre-trip informed drivers different scenarios are simulated in order to investigate how drivers’ adaptation to the traffic congestion influences the network performance with respect to the MFD shape as well as other indicators, such as total travel time. This study confirmed the impact of information provision on the MFD shape, and addressed the usefulness of the MFD for measuring the dynamic information provision benefit.
Resumo:
The Bluetooth technology is being increasingly used to track vehicles throughout their trips, within urban networks and across freeway stretches. One important opportunity offered by this type of data is the measurement of Origin-Destination patterns, emerging from the aggregation and clustering of individual trips. In order to obtain accurate estimations, however, a number of issues need to be addressed, through data filtering and correction techniques. These issues mainly stem from the use of the Bluetooth technology amongst drivers, and the physical properties of the Bluetooth sensors themselves. First, not all cars are equipped with discoverable Bluetooth devices and the Bluetooth-enabled vehicles may belong to some small socio-economic groups of users. Second, the Bluetooth datasets include data from various transport modes; such as pedestrian, bicycles, cars, taxi driver, buses and trains. Third, the Bluetooth sensors may fail to detect all of the nearby Bluetooth-enabled vehicles. As a consequence, the exact journey for some vehicles may become a latent pattern that will need to be extracted from the data. Finally, sensors that are in close proximity to each other may have overlapping detection areas, thus making the task of retrieving the correct travelled path even more challenging. The aim of this paper is twofold. We first give a comprehensive overview of the aforementioned issues. Further, we propose a methodology that can be followed, in order to cleanse, correct and aggregate Bluetooth data. We postulate that the methods introduced by this paper are the first crucial steps that need to be followed in order to compute accurate Origin-Destination matrices in urban road networks.
Resumo:
Literature is limited in its knowledge of the Bluetooth protocol based data acquisition process and in the accuracy and reliability of the analysis performed using the data. This paper extends the body of knowledge surrounding the use of data from the Bluetooth Media Access Control Scanner (BMS) as a complementary traffic data source. A multi layer simulation model named Traffic and Communication Simulation (TCS) is developed. TCS is utilised to model the theoretical properties of the BMS data and analyse the accuracy and reliability of travel time estimation using the BMS data.
Resumo:
Water reuse through greywater irrigation has been adopted worldwide and has been proposed as a potential sustainable solution to increased water demands. Despite widespread adoption there is limited domestic knowledge of greywater reuse, there is no pressure to produce lowlevel phosphorus products and current guidelines and legislation, such as those in Australia, may be inadequate due to the lack of long-term data to provide a sound scientific basis. Research has clearly identified phosphorus as a potential environmental risk to waterways from many forms of irrigation. To assess the sustainability of greywater irrigation, this study compared four residential lots that had been irrigated with greywater for four years and adjacent non-irrigated lots that acted as controls. Each lot was monitored for the volume of greywater applied and selected physic-chemical water quality parameters and soil chemistry profiles were analysed. The non-irrigated soil profiles showed low levels of phosphorus and were used as controls. The Mechlich3 Phosphorus ratio (M3PSR) and Phosphate Environmental Risk Index (PERI) were used to determine the environmental risk of phosphorus leaching from the irrigated soils. Soil phosphorus concentrations were compared to theoretical greywater irrigation loadings. The measured phosphorus soil concentrations and the estimated greywater loadings were of similar magnitude. Sustainable greywater reuse is possible; however incorrect use and/or a lack of understanding of how household products affect greywater can result in phosphorus posing a significant risk to the environment.
Resumo:
Although transit travel time variability is essential for understanding the deterioration of reliability, optimising transit schedule and route choice; it has not attracted enough attention from the literature. This paper proposes public transport-oriented definitions of travel time variability and explores the distributions of public transport travel time using the Transit Signal Priority data. First, definitions of public transport travel time variability are established by extending the common definitions of variability in the literature and by using route and services data of public transport vehicles. Second, the paper explores the distribution of public transport travel time. A new approach for analysing the distributions involving all transit vehicles as well as vehicles from a specific route is proposed. The Lognormal distribution is revealed as the descriptors for public transport travel time from the same route and service. The methods described in this study could be of interest for both traffic managers and transit operators for planning and managing the transit systems.
Resumo:
Smart Card data from Automated Fare Collection system has been considered as a promising source of information for transit planning. However, literature has been limited to mining travel patterns from transit users and suggesting the potential of using this information. This paper proposes a method for mining spatial regular origins-destinations and temporal habitual travelling time from transit users. These travel regularity are discussed as being useful for transit planning. After reconstructing the travel itineraries, three levels of Density-Based Spatial Clustering of Application with Noise (DBSCAN) have been utilised to retrieve travel regularity of each of each frequent transit users. Analyses of passenger classifications and personal travel time variability estimation are performed as the examples of using travel regularity in transit planning. The methodology introduced in this paper is of interest for transit authorities in planning and managements
Resumo:
The Macroscopic Fundamental Diagram (MFD) relates space-mean density and flow, and the existence with dynamic features was confirmed in congested urban network with real data set from loop detectors and taxi probes. Since the MFD represents the area-wide network traffic performances, it gives foundations for perimeter control strategies and an area traffic state estimation enabling area-based network control. However, limited works have been reported on real world example from signalised arterial network. This paper fuses data from multiple sources (Bluetooth, Loops and Signals) and develops a framework for the development of the MFD for Brisbane. Existence of the MFD in Brisbane network is confirmed. Different MFDs (from whole network and several sub regions) are evaluated to discover the spatial partitioning in network performance representation.
Resumo:
I grew up in academic heaven. At least for me it was. Not only was Sweden in the late 1980s paradise for any kind of empirical research, with rich and high-quality business statistics being made available to researchers without them having to sign away their lives; 70+ percent response rates achieved in mail surveys to almost any group (if you knew how to do them), and boards of directors opening their doors to more qualitatively orientated researchers to sit in during their meetings. In addition, I perceived an environment with a very high degree of academic freedom, letting me do whatever I found interesting and important. I’m sure for others it was sheer hell, with very unclear career paths and rules of the game. Career progression (something which rarely entered my mind) meant that you tried as best you could and then you put all your work – reports, books, book chapters, conference papers, maybe even published articles – in a box and had some external committee of professors look at it. If you were lucky they liked what they saw for whatever reasons their professorial wisdom dictated, and you got hired or promoted. If you were not so lucky you wouldn’t get the job or the promotion, without quite knowing why. So people could easily imagine an old boys club – whose members were themselves largely unproven in international, peer review publishing – picking whoever they wanted by whatever criteria they choose to apply. Neither the fact that assessors were external nor the presence of an appeals system might have completely appeased your suspicious and skeptical mind, considering the balance of power.
Resumo:
Polycaprolactone (PCL) is a resorbable polymer used extensively in bone tissue engineering owing to good structural properties and processability. Strontium substituted bioactive glass (SrBG) has the ability to promote osteogenesis and may be incorporated into scaffolds intended for bone repair. Here we describe for the first time, the development of a PCL-SrBG composite scaffold incorporating 10% (weight) of SrBG particles into PCL bulk, produced by the technique of melt-electrospinning. We show that we are able to reproducibly manufacture composite scaffolds with an interconnected porous structure and, furthermore, these scaffolds were demonstrated to be non-cytotoxic in vitro. Ions present in the SrBG component were shown to dissolve into cell culture media and promoted precipitation of a calcium phosphate layer on the scaffold surface which in turn led to noticeably enhanced alkaline phosphatase activity in MC3T3-E1 cells compared to PLC-only scaffolds. These results suggest that melt-electrospun PCL-SrBG composite scaffolds show potential to become effective bone graft substitutes.
Resumo:
Travel time prediction has long been the topic of transportation research. But most relevant prediction models in the literature are limited to motorways. Travel time prediction on arterial networks is challenging due to involving traffic signals and significant variability of individual vehicle travel time. The limited availability of traffic data from arterial networks makes travel time prediction even more challenging. Recently, there has been significant interest of exploiting Bluetooth data for travel time estimation. This research analysed the real travel time data collected by the Brisbane City Council using the Bluetooth technology on arterials. Databases, including experienced average daily travel time are created and classified for approximately 8 months. Thereafter, based on data characteristics, Seasonal Auto Regressive Integrated Moving Average (SARIMA) modelling is applied on the database for short-term travel time prediction. The SARMIA model not only takes the previous continuous lags into account, but also uses the values from the same time of previous days for travel time prediction. This is carried out by defining a seasonality coefficient which improves the accuracy of travel time prediction in linear models. The accuracy, robustness and transferability of the model are evaluated through comparing the real and predicted values on three sites within Brisbane network. The results contain the detailed validation for different prediction horizons (5 min to 90 minutes). The model performance is evaluated mainly on congested periods and compared to the naive technique of considering the historical average.
Resumo:
Crashes on motorway contribute to a significant proportion (40-50%) of non-recurrent motorway congestions. Hence reduce crashes will help address congestion issues (Meyer, 2008). Crash likelihood estimation studies commonly focus on traffic conditions in a Short time window around the time of crash while longer-term pre-crash traffic flow trends are neglected. In this paper we will show, through data mining techniques, that a relationship between pre-crash traffic flow patterns and crash occurrence on motorways exists, and that this knowledge has the potential to improve the accuracy of existing models and opens the path for new development approaches. The data for the analysis was extracted from records collected between 2007 and 2009 on the Shibuya and Shinjuku lines of the Tokyo Metropolitan Expressway in Japan. The dataset includes a total of 824 rear-end and sideswipe crashes that have been matched with traffic flow data of one hour prior to the crash using an incident detection algorithm. Traffic flow trends (traffic speed/occupancy time series) revealed that crashes could be clustered with regards of the dominant traffic flow pattern prior to the crash. Using the k-means clustering method allowed the crashes to be clustered based on their flow trends rather than their distance. Four major trends have been found in the clustering results. Based on these findings, crash likelihood estimation algorithms can be fine-tuned based on the monitored traffic flow conditions with a sliding window of 60 minutes to increase accuracy of the results and minimize false alarms.
Resumo:
Crashes that occur on motorways contribute to a significant proportion (40-50%) of non-recurrent motorway congestions. Hence, reducing the frequency of crashes assists in addressing congestion issues (Meyer, 2008). Crash likelihood estimation studies commonly focus on traffic conditions in a short time window around the time of a crash while longer-term pre-crash traffic flow trends are neglected. In this paper we will show, through data mining techniques that a relationship between pre-crash traffic flow patterns and crash occurrence on motorways exists. We will compare them with normal traffic trends and show this knowledge has the potential to improve the accuracy of existing models and opens the path for new development approaches. The data for the analysis was extracted from records collected between 2007 and 2009 on the Shibuya and Shinjuku lines of the Tokyo Metropolitan Expressway in Japan. The dataset includes a total of 824 rear-end and sideswipe crashes that have been matched with crashes corresponding to traffic flow data using an incident detection algorithm. Traffic trends (traffic speed time series) revealed that crashes can be clustered with regards to the dominant traffic patterns prior to the crash. Using the K-Means clustering method with Euclidean distance function allowed the crashes to be clustered. Then, normal situation data was extracted based on the time distribution of crashes and were clustered to compare with the “high risk” clusters. Five major trends have been found in the clustering results for both high risk and normal conditions. The study discovered traffic regimes had differences in the speed trends. Based on these findings, crash likelihood estimation models can be fine-tuned based on the monitored traffic conditions with a sliding window of 30 minutes to increase accuracy of the results and minimize false alarms.
Resumo:
The production of adequate agricultural outputs to support the growing human population places great demands on agriculture, especially in light of ever-greater restrictions on input resources. Sorghum is a drought-adapted cereal capable of reliable production where other cereals fail, and thus represents a good candidate to address food security as agricultural inputs of water and arable land grow scarce. A long-standing issue with sorghum grain is that it has an inherently lower digestibility. Here we show that a low-frequency allele type in the starch metabolic gene, pullulanase, is associated with increased digestibility, regardless of genotypic background. We also provide evidence that the beneficial allele type is not associated with deleterious pleiotropic effects in the modern field environment. We argue that increasing the digestibility of an adapted crop is a viable way forward towards addressing food security while maximizing water and land-use efficiency.