429 resultados para Columbian Society (Marblehead, Mass.)
Resumo:
Hindered amine light stabilisers (HALS) are the most effective antioxidants currently available for polymer systems in post-production, in-service applications, yet the mechanism of their action is still not fully understood. Structural characterisation of HALS in polymer matrices, particularly the identification of structural modifications brought about by oxidative conditions, is critical to aid mechanistic understanding of the prophylactic effects of these molecules. In this work, electrospray ionisation tandem mass spectrometry (ESI-MS/MS) was applied to the analysis of a suite of commercially available 2,2,6,6-tetramethylpiperidine-based HALS. Fragmentation mechanisms for the \[M + H](+) ions are proposed, which provide a rationale for the product ions observed in the MS/MS and MS(3) mass spectra of N-H, N-CH(3), N-C(O)CH(3) and N-OR containing HALS (where R is an alkyl substituent). A common product ion at m/z 123 was identified for the group of antioxidants containing N-H, N-CH3 or N-C(0)CH3 functionality, and this product ion was employed in precursor ion scans on a triple quadrupole mass spectrometer to identify the HALS species present in a crude extract from of a polyester-based coil coating. Using MS/MS, two degradation products were unambiguously identified. This technique provides a simple and selective approach to monitoring HALS structures within complex matrices. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
The alkaline perhydrolysis of the nerve agent O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate (VX) was investigated by studying the ion-molecule reactions of HOO(-) with O,S-dimethyl methylphosphonothioate in a modified linear ion-trap mass spectrometer. In addition to simple proton transfer, two other abundant product ions are observed at m/z 125 and 109 corresponding to the S-methyl methylphosphonothioate and methyl methylphosphonate anions, respectively. The structure of these product ions is demonstrated by a combination of collision-induced dissociation and isotope-labeling experiments that also provide evidence for their formation by nucleophilic reaction pathways, namely, (i) S(N)2 at carbon to yield the S-methyl methylphosphonothioate anion and (ii) nucleophilic addition at phosphorus affording a reactive pentavalent intermediate that readily undergoes internal sulfur oxidation and concomitant elimination of CH(3)SOH to yield the methyl methylphosphonate anion. Consistent with previous Solution phase observations of VX perhydrolysis, the toxic P-O cleavage product is not observed in this VX model system and theoretical calculations identify P-O cleavage to be energetically uncompetitive. Conversely, intramolecular sulfur oxidation is calculated to be extremely exothermic and kinetically accessible explaining its competitiveness with the facile gas phase proton transfer process. Elimination of a sulfur moiety deactivates the nerve agent VX and thus the intramolecular sulfur oxidation process reported here is also able to explain the selective perhydrolysis of the nerve agent to relatively nontoxic products.
Resumo:
OBJECTIVE To compare the physical activity levels of overweight and non overweight 3- to 5-y-old children while attending preschool. A secondary aim was to evaluate weight-related differences in hypothesized parental determinants of child physical activity behavior. DESIGN Cross-sectional study. SUBJECTS A total of 245, 3- to 5-y-olds (127 girls, 118 boys) and their parent(s) (242 mothers, 173 fathers) recruited from nine preschools. Overweight status determined using the age- and sex-specific 85th percentile for body mass index (BMI) from CDC Growth Charts. MEASUREMENTS Physical activity during the preschool day was assessed on multiple days via two independent objective measures direct observation using the observation system for recording activity in preschools (OSRAP) and real-time accelerometry using the MTI/CSA 7164 accelerometer. Parents completed a take-home survey assessing sociodemographic information, parental height and weight, modeling of physical activity, support for physical activity, active toys and sporting equipment at home, child’s television watching, frequency of park visitation, and perceptions of child competence. RESULTS Overweight boys were significantly less active than their nonoverweight peers during the preschool day. No significant differences were observed in girls. Despite a strong association between childhood overweight status and parental obesity, no significant differences were observed for the hypothesized parental influences on physical activity behavior. CONCLUSIONS Our results suggest that a significant proportion of overweight children may be at increased risk for further gains in adiposity because of low levels of physical activity during the preschool day.
Resumo:
The hydrolysis of triasulfuron, metsulfuron-methyl and chlorsulfuron in aqueous buffer solutions and in soil suspensions at pH values ranging from 5.2 to 11.2 was investigated. Hydrolysis of all three compounds in both aqueous buffer and soil suspensions was highly pH-sensitive. The rate of hydrolysis was much faster in the acidic pH range (5.2-6.2) than under neutral and moderately alkaline conditions (8.2-9.4), but it increased rapidly as the pH exceeded 10.2. All three compounds degraded faster at pH 5.2 than at pH 11.2. Hydrolysis rates of all three compounds could be described well with pseudo-first-order kinetics. There were no significant differences (P =0.05) in the rate constants (k, day-1) of the three compounds in soil suspensions from those in buffer solutions within the pH ranges studied. A functional relationship based on the propensity of nonionic and anionic species of the herbicides to hydrolyse was used to describe the dependence of the 'rate constant' on pH. The hydrolysis involving attack by neutral water was at least 100-fold faster when the sulfonylurea herbicides were undissociated (acidic conditions) than when they were present as the anion at near neutral pH. In aqueous buffer solution at pH > 11, a prominent degradation pathway involved O-demethylation of metsulfuron-methyl to yield a highly polar degradate, and hydrolytic opening of the triazine ring. It is concluded that these herbicides are not likely to degrade substantially through hydrolysis in most agricultural (C) 2000 Society of Chemical Industry.
Resumo:
This article explores the relationship between the Responsibility to Protect (R2P) and the pursuit of the so-called ‘Women, Peace and Security’ (WPS) agenda at the UN. We ask whether the two agendas should continue to be pursued separately or whether each can make a useful contribution to the other. We argue that while the history of R2P has not included language that deliberately evokes the protection of women and the promotion of gender in preventing genocide and mass atrocities, this does not preclude the R2P and WPS agendas becoming mutually reinforcing. The article identifies cross-cutting areas where the two agendas may be leveraged for the UN and member states to address the concerns of women as both actors in need of protection and active agents in preventing and responding to genocide and mass atrocities, namely in the areas of early warning.
Resumo:
The changing and challenging conditions of the 21st century have been significantly impacting our economy, society and built and natural environments. Today generation of knowledge—mostly in the form of technology and innovation—is seen as a panacea for the adaptation to changes and management of challenges (Yigitcanlar, 2010a). Making space and place that concentrate on knowledge generation, thus, has become a priority for many nations (van Winden, 2010). Along with this movement, concepts like knowledge cities and knowledge precincts are coined as places where citizenship undertakes a deliberate and systematic initiative for founding its development on the identification and sustainable balance of its shared value system, and bases its ability to create wealth on its capacity to generate and leverage its knowledge capabilities (Carrillo, 2006; Yigitcanlar, 2008a). In recent years, the term knowledge precinct (Hu & Chang, 2005) in its most contemporary interpretation evolved into knowledge community precinct (KCP). KCP is a mixed-use post-modern urban setting—e.g., flexible, decontextualized, enclaved, fragmented—including a critical mass of knowledge enterprises and advanced networked infrastructures, developed with the aim of collecting the benefits of blurring the boundaries of living, shopping, recreation and working facilities of knowledge workers and their families. KCPs are the critical building blocks of knowledge cities, and thus, building successful KCPs significantly contributes to the formation of prosperous knowledge cities. In the literature this type of development—a place containing economic prosperity, environmental sustainability, just socio‐spatial order and good governance—is referred as knowledge-based urban development (KBUD). This chapter aims to provide a conceptual understanding on KBUD and its contribution to the building of KCPs that supports the formation of prosperous knowledge cities.
Resumo:
The charge and chemical composition of ambient particles in an urban environment were determined using a Neutral Particle and Air Ion Spectrometer and an Aerodyne compact Time-Of-Flight Aerosol Mass Spectrometer. Particle formation and growth events were observed on 20 of the 36 days of sampling, with eight of these events classified as strong. During these events, peaks in the concentration of intermediate and large ions were followed by peaks in the concentration of ammonium and sulphate, which were not observed in the organic fraction. Comparison of days with and without particle formation events revealed that ammonium and sulphate were the dominant species on particle formation days while high concentrations of biomass burning OA inhibited particle growth. Analyses of the degree of particle neutralisation lead us to conclude that an excess of ammonium enabled particle formation and growth. In addition, the large ion concentration increased sharply during particle growth, suggesting that during nucleation the neutral gaseous species ammonia and sulphuric acid react to form ammonium and sulphate ions. Overall, we conclude that the mechanism of particle formation and growth involved ammonia and sulphuric acid, with limited input from organics.
Resumo:
Hepatocellular carcinoma (HCC) is one of the primary hepatic malignancies and is the third most common cause of cancer related death worldwide. Although a wealth of knowledge has been gained concerning the initiation and progression of HCC over the last half century, efforts to improve our understanding of its pathogenesis at a molecular level are still greatly needed, to enable clinicians to enhance the standards of the current diagnosis and treatment of HCC. In the post-genome era, advanced mass spectrometry driven multi-omics technologies (e.g., profiling of DNA damage adducts, RNA modification profiling, proteomics, and metabolomics) stand at the interface between chemistry and biology, and have yielded valuable outcomes from the study of a diversity of complicated diseases. Particularly, these technologies are being broadly used to dissect various biological aspects of HCC with the purpose of biomarker discovery, interrogating pathogenesis as well as for therapeutic discovery. This proof of knowledge-based critical review aims at exploring the selected applications of those defined omics technologies in the HCC niche with an emphasis on translational applications driven by advanced mass spectrometry, toward the specific clinical use for HCC patients. This approach will enable the biomedical community, through both basic research and the clinical sciences, to enhance the applicability of mass spectrometry-based omics technologies in dissecting the pathogenesis of HCC and could lead to novel therapeutic discoveries for HCC.
Resumo:
This paper presents Australian results from the Interests and Recruitment in Science (IRIS) study with respect to the influence of STEM-related mass media, including science fiction, on students’ decisions to enrol in university STEM courses. The study found that across the full cohort (N=2999), students tended to attribute far greater influence to science-related documentaries/channels such as Life on Earth and the Discovery Channel, etc. than to science-fiction movies or STEM-related TV dramas. Males were more inclined than females to consider science fiction/fantasy books and films and popular science books/magazines as having been important in their decisions. Students taking physics/astronomy tended to rate the importance of science fiction/fantasy books and films higher than students in other courses. The implications of these results for our understanding of influences on STEM enrolments are discussed.
Resumo:
Indians tend to have lower lean body mass than other ethnic groups which increases the risk of chronic diseases. Three complementary studies included in this thesis advanced knowledge on determinants of lean body mass in Indians and the techniques to measure it. The first study examined the determinants of lean body mass in young Indian adults and highlighted the importance of diet and physical activity for development of lean body mass. This study has important implications for policy on prevention of chronic diseases in India. The other two studies helped refinement of the techniques of lean body mass measurement and are expected to facilitate future research in this area. The thesis is presented in the form of publications in high ranking journals.
Resumo:
Exhaust emissions from motor vehicles vary widely and depend on factors such as engine operating conditions, fuel, age, mileage and service history. A method has been devised to rapidly identify high-polluting vehicles as they travel on the road. The method is able to monitor emissions from a large number of vehicles in a short time and avoids the need to conduct expensive and time consuming tests on chassis dynamometers. A sample of the exhaust plume is captured as each vehicle passes a roadside monitoring station and the pollutant emission factors are calculated from the measured concentrations using carbon dioxide as a tracer. Although, similar methods have been used to monitor soot and gaseous mass emissions, to-date it has not been used to monitor particle number emissions from a large fleet of vehicles. This is particularly important as epidemiological studies have shown that particle number concentration is an important parameter in determining adverse health effects. The method was applied to measurements of particle number emissions from individual buses in the Brisbane City Council diesel fleet operating on the South-East Busway. Results indicate that the particle number emission factors are gamma- distributed, with a high proportion of the emissions being emitted by a small percentage of the buses. Although most of the high-emitters are the oldest buses in the fleet, there are clear exceptions, with some newer buses emitting as much. We attribute this to their recent service history, particularly pertaining to improper tuning of the engines. We recommend that a targeted correction program would be a highly effective measure in mitigating urban environmental pollution.
Resumo:
In this paper, we report the design and synthesis of isoindigo based low band gap polymer semiconductors, poly{N,N′-(2-octyldodecyl)-isoindigo-alt- naphthalene} (PISD-NAP) and poly{N,N′-(2-octyldodecyl)-isoindigo-alt- anthracene} (PISD-ANT). A series of donor-acceptor (D-A) copolymers can be prepared where donor and acceptor conjugated blocks can be attached alternately using organometallic coupling. In these polymers, an isoindigo dye acceptor moiety has been attached alternately with naphthalene and anthracene donor comonomer blocks by Suzuki coupling. PISD-NAP and PISD-ANT exhibit excellent solution processibility and good film-forming properties. Gel permeation chromatography exhibits a higher molecular mass with lower polydispersity. UV-vis-NIR absorption of these polymers exhibits a wide absorption band ranging from 300 nm to 800 nm, indicating the low band gap nature of the polymers. Optical band gaps calculated from the solid state absorption cutoff value for PISD-NAP and PISD-ANT are around 1.80 eV and 1.75 eV, respectively. Highest occupied molecular orbital (HOMO) values calculated respectively for PISD-NAP and PISD-ANT thin films on glass substrate by photoelectron spectroscopy in air (PESA) are 5.66 eV and 5.53 eV, indicative of the good stability of these materials in organic electronic device applications. These polymers exhibit p-channel charge transport characteristics when used as the active semiconductor in organic thin-film transistor (OTFT) devices in ambient conditions. The highest hole mobility of 0.013 cm2 V-1 s-1 is achieved in top contact and bottom-gate OTFT devices for PISD-ANT, whereas polymer PISD-NAP exhibited a hole mobility of 0.004 cm2 V -1 s-1. When these polymer semiconductors were used as a donor and PC71BM as an acceptor in OPV devices, the highest power conversion efficiency (PCE) of 1.13% is obtained for the PISD-ANT polymer.
Resumo:
New push-pull copolymers based on thiophene (donor) and benzothiadiazole (acceptor) units, poly[4,7-bis(3-dodecylthiophene-2-yl) benzothiadiazole-co- thiophene] (PT3B1) and poly[4,7-bis(3-dodecylthiophene-2-yl) benzothiadiazole-co-benzothiadiazole] (PT2B2), are designed and synthesized via Stille and Suzuki coupling routes respectively. Gel permeation chromatography shows the number average molecular weights are 31100 and 8400 g mol-1 for the two polymers, respectively. Both polymers have shown absorption throughout a wide range of the UV-vis region, from 300 to 650 nm. A significant red shift of the absorption edge is observed in thin films compared to solution of the copolymers; the optical band gap is in the range of 1.7 to 1.8 eV. Cyclic voltammetry indicates reversible oxidation and reduction processes with HOMO energy levels calculated to be in the range of 5.2 to 5.4 eV. Upon testing both materials for organic field-effect transistors (OFETs), PT3B1 showed a hole mobility of 6.1 × 10-4 cm2 V-1 s -1, while PT2B2 did not show any field effect transport. Both copolymers displayed a photovoltaic response when combined with a methanofullerene as an electron acceptor. The best performance was achieved when the copolymer PT3B1 was blended with [70]PCBM in a 1:4 ratio, exhibiting a short-circuit current of 7.27 mA cm-2, an open circuit voltage of 0.85 V, and a fill factor of 41% yielding a power conversion efficiency of 2.54% under simulated air mass (AM) 1.5 global (1.5 G) illumination conditions (100 mW cm-2). Similar devices utilizing PT2B2 in place of PT3B1 demonstrated reduced performance with a short-circuit current of 4.8 mA cm -2, an open circuit voltage of 0.73 V, and a fill factor of 30% resulting in a power conversion efficiency of roughly 1.06%.
Resumo:
The myofibrillar protein synthesis (MPS) response to resistance exercise (REX) and protein ingestion during energy deficit (ED) is unknown. We determined, in young men (n=8) and women (n=7), protein signaling, resting post-absorptive MPS during energy balance [EB: 45 kcal∙(kg FFM∙d)-1] and after 5d of ED [30 kcal∙(kg FFM∙d)-1] as well as MPS while in ED after acute REX in the fasted state and with the ingestion of whey protein (15 and 30 g). Post-absorptive rates of MPS were 27% lower in ED than EB (P<0.001), but REX stimulated MPS to rates equal to EB. Ingestion of 15 and 30 g of protein after REX in ED increased MPS ~16 and ~34% above resting EB, (P<0.02). p70 S6Kthr389 phosphorylation increased above EB only with combined exercise and protein intake (~2-7 fold; P<0.05). In conclusion, short-term ED reduces post-absorptive MPS, however, a bout of REX in ED restores MPS to values observed at rest in EB. The ingestion of protein after REX further increases MPS above resting EB in a dose-dependent manner. We conclude that combining REX with increased protein availability after exercise enhances rates of skeletal muscle protein synthesis during short term ED and could, in the long term, preserve muscle mass.