389 resultados para Camera Pose Estimation
Resumo:
Collections of biological specimens are fundamental to scientific understanding and characterization of natural diversity - past, present and future. This paper presents a system for liberating useful information from physical collections by bringing specimens into the digital domain so they can be more readily shared, analyzed, annotated and compared. It focuses on insects and is strongly motivated by the desire to accelerate and augment current practices in insect taxonomy which predominantly use text, 2D diagrams and images to describe and characterize species. While these traditional kinds of descriptions are informative and useful, they cannot cover insect specimens "from all angles" and precious specimens are still exchanged between researchers and collections for this reason. Furthermore, insects can be complex in structure and pose many challenges to computer vision systems. We present a new prototype for a practical, cost-effective system of off-the-shelf components to acquire natural-colour 3D models of insects from around 3 mm to 30 mm in length. ("Natural-colour" is used to contrast with "false-colour", i.e., colour generated from, or applied to, gray-scale data post-acquisition.) Colour images are captured from different angles and focal depths using a digital single lens reflex (DSLR) camera rig and two-axis turntable. These 2D images are processed into 3D reconstructions using software based on a visual hull algorithm. The resulting models are compact (around 10 megabytes), afford excellent optical resolution, and can be readily embedded into documents and web pages, as well as viewed on mobile devices. The system is portable, safe, relatively affordable, and complements the sort of volumetric data that can be acquired by computed tomography. This system provides a new way to augment the description and documentation of insect species holotypes, reducing the need to handle or ship specimens. It opens up new opportunities to collect data for research, education, art, entertainment, biodiversity assessment and biosecurity control. © 2014 Nguyen et al.
Resumo:
The use of camera traps in wildlife management is an increasingly common practice. A phenomenon which is also becoming more common is for such camera traps to unintentionally film individuals engaged in a variety of activities, ranging from the innocent to the nefarious and including lewd or potentially embarrassing behaviour. It is therefore possible for the use of camera traps to accidentally encroach upon the privacy rights of persons who venture into the area of surveillance. In this chapter we describe the legal framework of privacy in Australia and discuss the potential risk of this sleeping tiger for users of camera traps. We also present the results of a survey of camera trap users to assess the frequency of such unintended captures and the nature of activity being filmed before discussing the practical implications of these laws for camera traps users in this country and make recommendations.
Resumo:
We propose the use of optical flow information as a method for detecting and describing changes in the environment, from the perspective of a mobile camera. We analyze the characteristics of the optical flow signal and demonstrate how robust flow vectors can be generated and used for the detection of depth discontinuities and appearance changes at key locations. To successfully achieve this task, a full discussion on camera positioning, distortion compensation, noise filtering, and parameter estimation is presented. We then extract statistical attributes from the flow signal to describe the location of the scene changes. We also employ clustering and dominant shape of vectors to increase the descriptiveness. Once a database of nodes (where a node is a detected scene change) and their corresponding flow features is created, matching can be performed whenever nodes are encountered, such that topological localization can be achieved. We retrieve the most likely node according to the Mahalanobis and Chi-square distances between the current frame and the database. The results illustrate the applicability of the technique for detecting and describing scene changes in diverse lighting conditions, considering indoor and outdoor environments and different robot platforms.
Resumo:
We describe our experiences with automating a large fork-lift type vehicle that operates outdoors and in all weather. In particular, we focus on the use of independent and robust localisation systems for reliable navigation around the worksite. Two localisation systems are briefly described. The first is based on laser range finders and retro-reflective beacons, and the second uses a two camera vision system to estimate the vehicle’s pose relative to a known model of the surrounding buildings. We show the results from an experiment where the 20 tonne experimental vehicle, an autonomous Hot Metal Carrier, was conducting autonomous operations and one of the localisation systems was deliberately made to fail.
Resumo:
It is commonly perceived that variables ‘measuring’ different dimensions of teaching (construed as instructional attributes) used in student evaluation of teaching (SET) questionnaires are so highly correlated that they pose a serious multicollinearity problem for quantitative analysis including regression analysis. Using nearly 12000 individual student responses to SET questionnaires and ten key dimensions of teaching and 25 courses at various undergraduate and postgraduate levels for multiple years at a large Australian university, this paper investigates whether this is indeed the case and if so under what circumstances. This paper tests this proposition first by examining variance inflation factors (VIFs), across courses, levels and over time using individual responses; and secondly by using class averages. In the first instance, the paper finds no sustainable evidence of multicollinearity. While, there were one or two isolated cases of VIFs marginally exceeding the conservative threshold of 5, in no cases did the VIFs for any of the instructional attributes come anywhere close to the high threshold value of 10. In the second instance, however, the paper finds that the attributes are highly correlated as all the VIFs exceed 10. These findings have two implications: (a) given the ordinal nature of the data ordered probit analysis using individual student responses can be employed to quantify the impact of instructional attributes on TEVAL score; (b) Data based on class averages cannot be used for probit analysis. An illustrative exercise using level 2 undergraduate courses data suggests higher TEVAL scores depend first and foremost on improving explanation, presentation, and organization of lecture materials.
Resumo:
With the increasing need to adapt to new environments, data-driven approaches have been developed to estimate terrain traversability by learning the rover’s response on the terrain based on experience. Multiple learning inputs are often used to adequately describe the various aspects of terrain traversability. In a complex learning framework, it can be difficult to identify the relevance of each learning input to the resulting estimate. This paper addresses the suitability of each learning input by systematically analyzing the impact of each input on the estimate. Sensitivity Analysis (SA) methods provide a means to measure the contribution of each learning input to the estimate variability. Using a variance-based SA method, we characterize how the prediction changes as one or more of the input changes, and also quantify the prediction uncertainty as attributed from each of the inputs in the framework of dependent inputs. We propose an approach built on Analysis of Variance (ANOVA) decomposition to examine the prediction made in a near-to-far learning framework based on multi-task GP regression. We demonstrate the approach by analyzing the impact of driving speed and terrain geometry on the prediction of the rover’s attitude and chassis configuration in a Marsanalogue terrain using our prototype rover Mawson.
Resumo:
There is considerable scientific interest in personal exposure to ultrafine particles. Owing to their small size, these particles are able to penetrate deep into the lungs, where they may cause adverse respiratory, pulmonary and cardiovascular health effects. This article presents Bayesian hierarchical models for estimating and comparing inhaled particle surface area in the lung.
Resumo:
It is commonplace to use digital video cameras in robotic applications. These cameras have built-in exposure control but they do not have any knowledge of the environment, the lens being used, the important areas of the image and do not always produce optimal image exposure. Therefore, it is desirable and often necessary to control the exposure off the camera. In this paper we present a scheme for exposure control which enables the user application to determine the area of interest. The proposed scheme introduces an intermediate transparent layer between the camera and the user application which combines the information from these for optimal exposure production. We present results from indoor and outdoor scenarios using directional and fish-eye lenses showing the performance and advantages of this framework.