322 resultados para linear measures
Resumo:
Ordinal qualitative data are often collected for phenotypical measurements in plant pathology and other biological sciences. Statistical methods, such as t tests or analysis of variance, are usually used to analyze ordinal data when comparing two groups or multiple groups. However, the underlying assumptions such as normality and homogeneous variances are often violated for qualitative data. To this end, we investigated an alternative methodology, rank regression, for analyzing the ordinal data. The rank-based methods are essentially based on pairwise comparisons and, therefore, can deal with qualitative data naturally. They require neither normality assumption nor data transformation. Apart from robustness against outliers and high efficiency, the rank regression can also incorporate covariate effects in the same way as the ordinary regression. By reanalyzing a data set from a wheat Fusarium crown rot study, we illustrated the use of the rank regression methodology and demonstrated that the rank regression models appear to be more appropriate and sensible for analyzing nonnormal data and data with outliers.
Resumo:
We investigate methods for data-based selection of working covariance models in the analysis of correlated data with generalized estimating equations. We study two selection criteria: Gaussian pseudolikelihood and a geodesic distance based on discrepancy between model-sensitive and model-robust regression parameter covariance estimators. The Gaussian pseudolikelihood is found in simulation to be reasonably sensitive for several response distributions and noncanonical mean-variance relations for longitudinal data. Application is also made to a clinical dataset. Assessment of adequacy of both correlation and variance models for longitudinal data should be routine in applications, and we describe open-source software supporting this practice.
Resumo:
We consider rank-based regression models for repeated measures. To account for possible withinsubject correlations, we decompose the total ranks into between- and within-subject ranks and obtain two different estimators based on between- and within-subject ranks. A simple perturbation method is then introduced to generate bootstrap replicates of the estimating functions and the parameter estimates. This provides a convenient way for combining the corresponding two types of estimating function for more efficient estimation.
Resumo:
We consider the analysis of longitudinal data when the covariance function is modeled by additional parameters to the mean parameters. In general, inconsistent estimators of the covariance (variance/correlation) parameters will be produced when the "working" correlation matrix is misspecified, which may result in great loss of efficiency of the mean parameter estimators (albeit the consistency is preserved). We consider using different "Working" correlation models for the variance and the mean parameters. In particular, we find that an independence working model should be used for estimating the variance parameters to ensure their consistency in case the correlation structure is misspecified. The designated "working" correlation matrices should be used for estimating the mean and the correlation parameters to attain high efficiency for estimating the mean parameters. Simulation studies indicate that the proposed algorithm performs very well. We also applied different estimation procedures to a data set from a clinical trial for illustration.
Resumo:
We propose an iterative estimating equations procedure for analysis of longitudinal data. We show that, under very mild conditions, the probability that the procedure converges at an exponential rate tends to one as the sample size increases to infinity. Furthermore, we show that the limiting estimator is consistent and asymptotically efficient, as expected. The method applies to semiparametric regression models with unspecified covariances among the observations. In the special case of linear models, the procedure reduces to iterative reweighted least squares. Finite sample performance of the procedure is studied by simulations, and compared with other methods. A numerical example from a medical study is considered to illustrate the application of the method.
Resumo:
This article develops a method for analysis of growth data with multiple recaptures when the initial ages for all individuals are unknown. The existing approaches either impute the initial ages or model them as random effects. Assumptions about the initial age are not verifiable because all the initial ages are unknown. We present an alternative approach that treats all the lengths including the length at first capture as correlated repeated measures for each individual. Optimal estimating equations are developed using the generalized estimating equations approach that only requires the first two moment assumptions. Explicit expressions for estimation of both mean growth parameters and variance components are given to minimize the computational complexity. Simulation studies indicate that the proposed method works well. Two real data sets are analyzed for illustration, one from whelks (Dicathais aegaota) and the other from southern rock lobster (Jasus edwardsii) in South Australia.
Resumo:
Statistical methods are often used to analyse commercial catch and effort data to provide standardised fishing effort and/or a relative index of fish abundance for input into stock assessment models. Achieving reliable results has proved difficult in Australia's Northern Prawn Fishery (NPF), due to a combination of such factors as the biological characteristics of the animals, some aspects of the fleet dynamics, and the changes in fishing technology. For this set of data, we compared four modelling approaches (linear models, mixed models, generalised estimating equations, and generalised linear models) with respect to the outcomes of the standardised fishing effort or the relative index of abundance. We also varied the number and form of vessel covariates in the models. Within a subset of data from this fishery, modelling correlation structures did not alter the conclusions from simpler statistical models. The random-effects models also yielded similar results. This is because the estimators are all consistent even if the correlation structure is mis-specified, and the data set is very large. However, the standard errors from different models differed, suggesting that different methods have different statistical efficiency. We suggest that there is value in modelling the variance function and the correlation structure, to make valid and efficient statistical inferences and gain insight into the data. We found that fishing power was separable from the indices of prawn abundance only when we offset the impact of vessel characteristics at assumed values from external sources. This may be due to the large degree of confounding within the data, and the extreme temporal changes in certain aspects of individual vessels, the fleet and the fleet dynamics.
Resumo:
The method of generalised estimating equations for regression modelling of clustered outcomes allows for specification of a working matrix that is intended to approximate the true correlation matrix of the observations. We investigate the asymptotic relative efficiency of the generalised estimating equation for the mean parameters when the correlation parameters are estimated by various methods. The asymptotic relative efficiency depends on three-features of the analysis, namely (i) the discrepancy between the working correlation structure and the unobservable true correlation structure, (ii) the method by which the correlation parameters are estimated and (iii) the 'design', by which we refer to both the structures of the predictor matrices within clusters and distribution of cluster sizes. Analytical and numerical studies of realistic data-analysis scenarios show that choice of working covariance model has a substantial impact on regression estimator efficiency. Protection against avoidable loss of efficiency associated with covariance misspecification is obtained when a 'Gaussian estimation' pseudolikelihood procedure is used with an AR(1) structure.
Resumo:
Internationally, marine biodiversity conservation objectives are having an increasing influence on the management of commercial fisheries. While this is largely being implemented through Marine Protected Areas (MPAs) other management measures, such as market based instruments (MBIs), have proved to be effective at managing target species catch in fisheries and reducing environmental impacts in industries such as mining and tourism. Market-based management measures aim to mitigate the impacts of activities by better aligning the incentives their participants face with the objectives of management, changing their behavior as a consequence. In this paper, we review the potential of MBIs as management tools to mitigate undesirable environmental impacts associated with commercial fishing. Where they exist, examples of previous applications are described and the factors that influence their applicability and effectiveness are discussed. Several fishing methods and impacts are considered and suggest that whilst no single approach is most appropriate in all circumstances either replacing or complementing existing management arrangements with MBIs has the potential to improve environmental performance. This has a number of implications. From the environmental perspective they should enable levels of undesirable impacts such as damage to sensitive habitat or the bycatch of protected species of turtles, marine mammals, and seabirds to be reduced. The increased flexibility MBIs allow industry when developing solutions also has the potential to reduce costs to both the industry and managers, improving the cost-effectiveness of regulation as a result. Further, in the increasingly relevant case of MPAs the need for publicly funded compensation, often paid to industry when vessels are excluded from grounds, may also be significantly reduced if improved environmental performance makes it possible for some industry members to continue operating.
Resumo:
This paper presents an approach, based on Lean production philosophy, for rationalising the processes involved in the production of specification documents for construction projects. Current construction literature erroneously depicts the process for the creation of construction specifications as a linear one. This traditional understanding of the specification process often culminates in process-wastes. On the contrary, the evidence suggests that though generalised, the activities involved in producing specification documents are nonlinear. Drawing on the outcome of participant observation, this paper presents an optimised approach for representing construction specifications. Consequently, the actors typically involved in producing specification documents are identified, the processes suitable for automation are highlighted and the central role of tacit knowledge is integrated into a conceptual template of construction specifications. By applying the transformation, flow, value (TFV) theory of Lean production the paper argues that value creation can be realised by eliminating the wastes associated with the traditional preparation of specification documents with a view to integrating specifications in digital models such as Building Information Models (BIM). Therefore, the paper presents an approach for rationalising the TFV theory as a method for optimising current approaches for generating construction specifications based on a revised specification writing model.
Resumo:
This paper investigates quality of service (QoS) and resource productivity implications of transit route passenger loading and travel time. It highlights the value of occupancy load factor as a direct passenger comfort QoS measure. Automatic Fare Collection data for a premium radial bus route in Brisbane, Australia, is used to investigate time series correlation between occupancy load factor and passenger average travel time. Correlation is strong across the entire span of service in both directions. Passengers tend to be making longer, peak direction commuter trips under significantly less comfortable conditions than off-peak. The Transit Capacity and Quality of Service Manual uses segment based load factor as a measure of onboard loading comfort QoS. This paper provides additional insight into QoS by relating the two route based dimensions of occupancy load factor and passenger average travel time together in a two dimensional format, both from the passenger’s and operator’s perspectives. Future research will apply Value of Time to QoS measurement, reflecting perceived passenger comfort through crowding and average time spent onboard. This would also assist in transit service quality econometric modeling. The methodology can be readily applied in a practical setting where AFC data for fixed scheduled routes is available. The study outcomes also provide valuable research and development directions.
Resumo:
Introduction: Apathy, agitated behaviours, loneliness and depression are common consequences of dementia. This trial aims to evaluate the effect of a robotic animal on behavioural and psychological symptoms of dementia in people with dementia living in long-term aged care. Methods and analysis: A cluster-randomised controlled trial with three treatment groups: PARO (robotic animal), Plush-Toy (non-robotic PARO) or Usual Care (Control). The nursing home sites are Australian Government approved and accredited facilities of 60 or more beds. The sites are located in South-East Queensland, Australia. A sample of 380 adults with a diagnosis of dementia, aged 60 years or older living in one of the participating facilities will be recruited. The intervention consists of three individual 15 min non-facilitated sessions with PARO or Plush- Toy per week, for a period of 10 weeks. The primary outcomes of interest are improvement in agitation, mood states and engagement. Secondary outcomes include sleep duration, step count, change in psychotropic medication use, change in treatment costs, and staff and family perceptions of PARO or Plush-Toy. Video data will be analysed using Noldus XT Pocket Observer; descriptive statistics will be used for participants’ demographics and outcome measures; cluster and individual level analyses to test all hypotheses and Generalised Linear Models for cluster level and Generalised Estimation Equations and/or Multi-level Modeling for individual level data. Ethics and dissemination: The study participants or their proxy will provide written informed consent. The Griffith University Human Research Ethics Committee has approved the study (NRS/03/14/HREC). The results of the study will provide evidence of the efficacy of a robotic animal as a psychosocial treatment for the behavioural and psychological symptoms of dementia. Findings will be presented at local and international conference meetings and published in peer-reviewed journals.
Resumo:
Embryonic development involves diffusion and proliferation of cells, as well as diffusion and reaction of molecules, within growing tissues. Mathematical models of these processes often involve reaction–diffusion equations on growing domains that have been primarily studied using approximate numerical solutions. Recently, we have shown how to obtain an exact solution to a single, uncoupled, linear reaction–diffusion equation on a growing domain, 0 < x < L(t), where L(t) is the domain length. The present work is an extension of our previous study, and we illustrate how to solve a system of coupled reaction–diffusion equations on a growing domain. This system of equations can be used to study the spatial and temporal distributions of different generations of cells within a population that diffuses and proliferates within a growing tissue. The exact solution is obtained by applying an uncoupling transformation, and the uncoupled equations are solved separately before applying the inverse uncoupling transformation to give the coupled solution. We present several example calculations to illustrate different types of behaviour. The first example calculation corresponds to a situation where the initially–confined population diffuses sufficiently slowly that it is unable to reach the moving boundary at x = L(t). In contrast, the second example calculation corresponds to a situation where the initially–confined population is able to overcome the domain growth and reach the moving boundary at x = L(t). In its basic format, the uncoupling transformation at first appears to be restricted to deal only with the case where each generation of cells has a distinct proliferation rate. However, we also demonstrate how the uncoupling transformation can be used when each generation has the same proliferation rate by evaluating the exact solutions as an appropriate limit.
Resumo:
Many processes during embryonic development involve transport and reaction of molecules, or transport and proliferation of cells, within growing tissues. Mathematical models of such processes usually take the form of a reaction-diffusion partial differential equation (PDE) on a growing domain. Previous analyses of such models have mainly involved solving the PDEs numerically. Here, we present a framework for calculating the exact solution of a linear reaction-diffusion PDE on a growing domain. We derive an exact solution for a general class of one-dimensional linear reaction—diffusion process on 0
Resumo:
Three major changes in drink driving enforcement have occurred in South Australia since 1981. The effect of these changes on a number of surrogate measures of alcohol involvement in accidents were investigated. The surrogates included alcohol involvement of driver fatalities, and combinations of casualty, serious casualty, single vehicle and nighttime accidents. Data from previous studies were also cited. It was found that relationships between surrogate measures were inconsistent, and incompatible with assumptions about drink driving levels and related accidents. It was concluded that until these effects are understood the use of surrogate measures should be treated with caution.