368 resultados para Monitoring Regime
Resumo:
Bats are an important component of mammalian biodiversity and fill such a wide array of ecological niches that they may offer an important multisensory bioindicator role in assessing ecosystem health. There is a need to monitor population trends of bats for their own sake because many populations face numerous environmental threats related to climate change, habitat loss, fragmentation, hunting, and emerging diseases. To be able to establish bat ultrasonic biodiversity trends as a reliable indicator, it is important to standardize monitoring protocols, data management, and analyses. This chapter discusses the main issues to be considered in developing a bat ultrasonic indicator. It focuses on the results from indicator bats program (iBats), a system for the global acoustic monitoring of bats, in Eastern Europe. Finally, the chapter reviews the strengths and weaknesses of the Program and considers the opportunities and threats that it may face in the future.
Resumo:
In this paper we present research adapting a state of the art condition-invariant robotic place recognition algorithm to the role of automated inter- and intra-image alignment of sensor observations of environmental and skin change over time. The approach involves inverting the typical criteria placed upon navigation algorithms in robotics; we exploit rather than attempt to fix the limited camera viewpoint invariance of such algorithms, showing that approximate viewpoint repetition is realistic in a wide range of environments and medical applications. We demonstrate the algorithms automatically aligning challenging visual data from a range of real-world applications: ecological monitoring of environmental change, aerial observation of natural disasters including flooding, tsunamis and bushfires and tracking wound recovery and sun damage over time and present a prototype active guidance system for enforcing viewpoint repetition. We hope to provide an interesting case study for how traditional research criteria in robotics can be inverted to provide useful outcomes in applied situations.
Resumo:
A system for monitoring conditions in a remote environment. The system comprising a data transmission network including a plurality of data sensing nodes. Each data sensing node includes an environment sensing means for periodically sensing the environment around node, a transmission means for periodic wireless transmission of sensed data to adjacent data sensing nodes. These adjacent data sensing nodes combining their sensed data with the received data from other data sensing nodes and on transmit the combined data.
Resumo:
The Kyoto Protocol is remarkable among global multilateral environmental agreements for its efforts to depoliticize compliance. However, attempts to create autonomous, arm’s length and rule-based compliance processes with extensive reliance on putatively neutral experts were only partially realized in practice in the first commitment period from 2008 to 2012. In particular, the procedurally constrained facilitative powers vested in the Facilitative Branch were circumvented, and expert review teams (ERTs) assumed pivotal roles in compliance facilitation. The ad hoc diplomatic and facilitative practices engaged in by these small teams of technical experts raise questions about the reliability and consistency of the compliance process. For the future operation of the Kyoto compliance system, it is suggested that ERTs should be confined to more technical and procedural roles, in line with their expertise. There would then be greater scope for the Facilitative Branch to assume a more comprehensive facilitative role, safeguarded by due process guarantees, in accordance with its mandate. However, if – as appears likely – the future compliance trajectories under the United Nations Framework Convention on Climate Change will include a significant role for ERTs without oversight by the Compliance Committee, it is important to develop appropriate procedural safeguards that reflect and shape the various technical and political roles these teams currently play.
Resumo:
Experimental work could be conducted in either laboratory or at field site. Generally, the laboratory experiments are carried out in an artificial setting and with a highly controlled environment. By contrast, the field experiments often take place in a natural setting, subject to the influences of many uncontrolled factors. Therefore, it is necessary to carefully assess the possible limitations and appropriateness of an experiment before embarking on it. In this paper, a case study of field monitoring of the energy performance of air conditioners is presented. Significant challenges facing the experimental work are described. Lessons learnt from this case study are also discussed. In particular, it was found that on-going analysis of the monitoring data and the correction of abnormal issues are two of the keys for a successful field test program. It was also shown that the installation of monitoring systems could have a significant impact on the accuracy of the data being collected. Before monitoring system was set up to collect monitoring data, it is recommended that an initial analysis of sample monitored data should be conducted to make sure that the monitoring data can achieve the expected precision. In the case where inevitable inherent errors were induced from the installation of field monitoring systems, appropriate remediation may need to be developed and implemented for the improved accuracy of the estimation of results. On-going analysis of monitoring data and correction of any abnormal issues would be the key to a successful field test program.
Resumo:
One of the main challenges facing online and offline path planners is the uncertainty in the magnitude and direction of the environmental energy because it is dynamic, changeable with time, and hard to forecast. This thesis develops an artificial intelligence for a mobile robot to learn from historical or forecasted data of environmental energy available in the area of interest which will help for a persistence monitoring under uncertainty using the developed algorithm.
Resumo:
The gross under-resourcing of conservation endeavours has placed an increasing emphasis on spending accountability. Increased accountability has led to monitoring forming a central element of conservation programs. Although there is little doubt that information obtained from monitoring can improve management of biodiversity, the cost (in time and/or money) of gaining this knowledge is rarely considered when making decisions about allocation of resources to monitoring. We present a simple framework allowing managers and policy advisors to make decisions about when to invest in monitoring to improve management. © 2010 Elsevier Ltd.
Resumo:
[Letter to editor, brief commentary or brief communication ]
Resumo:
In ecosystems driven by water availability, plant community dynamics depend on complex interactions between vegetation, hydrology, and human water resources use. Along ephemeral rivers—where water availability is erratic—vegetation and people are particularly vulnerable to changes in each other's water use. Sensible management requires that water supply be maintained for people, while preserving ecosystem health. Meeting such requirements is challenging because of the unpredictable water availability. We applied information gap decision theory to an ecohydrological system model of the Kuiseb River environment in Namibia. Our aim was to identify the robustness of ecosystem and water management strategies to uncertainties in future flood regimes along ephemeral rivers. We evaluated the trade-offs between alternative performance criteria and their robustness to uncertainty to account for both (i) human demands for water supply and (ii) reducing the risk of species extinction caused by water mining. Increasing uncertainty of flood regime parameters reduced the performance under both objectives. Remarkably, the ecological objective (species coexistence) was more sensitive to uncertainty than the water supply objective. However, within each objective, the relative performance of different management strategies was insensitive to uncertainty. The ‘best’ management strategy was one that is tuned to the competitive species interactions in the Kuiseb environment. It regulates the biomass of the strongest competitor and, thus, at the same time decreases transpiration, thereby increasing groundwater storage and reducing pressure on less dominant species. This robust mutually acceptable strategy enables species persistence without markedly reducing the water supply for humans. This study emphasises the utility of ecohydrological models for resource management of water-controlled ecosystems. Although trade-offs were identified between alternative performance criteria and their robustness to uncertain future flood regimes, management strategies were identified that help to secure an ecologically sustainable water supply.
Resumo:
The monitoring of the actual activities of daily living of individuals with lower limb amputation is essential for an evidence-based fitting of the prosthesis, more particularly the choice of components (e.g., knees, ankles, feet)[1-4]. The purpose of this presentation was to give an overview of the categorization of the load regime data to assess the functional output and usage of the prosthesis of lower limb amputees has presented in several publications[5, 6]. The objectives were to present a categorization of load regime and to report the results for a case.
Resumo:
In the structural health monitoring (SHM) field, long-term continuous vibration-based monitoring is becoming increasingly popular as this could keep track of the health status of structures during their service lives. However, implementing such a system is not always feasible due to on-going conflicts between budget constraints and the need of sophisticated systems to monitor real-world structures under their demanding in-service conditions. To address this problem, this paper presents a comprehensive development of a cost-effective and flexible vibration DAQ system for long-term continuous SHM of a newly constructed institutional complex with a special focus on the main building. First, selections of sensor type and sensor positions are scrutinized to overcome adversities such as low-frequency and low-level vibration measurements. In order to economically tackle the sparse measurement problem, a cost-optimized Ethernet-based peripheral DAQ model is first adopted to form the system skeleton. A combination of a high-resolution timing coordination method based on the TCP/IP command communication medium and a periodic system resynchronization strategy is then proposed to synchronize data from multiple distributed DAQ units. The results of both experimental evaluations and experimental–numerical verifications show that the proposed DAQ system in general and the data synchronization solution in particular work well and they can provide a promising cost-effective and flexible alternative for use in real-world SHM projects. Finally, the paper demonstrates simple but effective ways to make use of the developed monitoring system for long-term continuous structural health evaluation as well as to use the instrumented building herein as a multi-purpose benchmark structure for studying not only practical SHM problems but also synchronization related issues.