306 resultados para Micron Scale
Resumo:
Scales provide optical disguise, low water drag and mechanical protection to fish, enabling them to survive catastrophic environmental disasters, predators and microorganisms. The unique structures and stacking sequences of fish scales inspired the fabrication of artificial nanostructures with salient optical, interfacial and mechanical properties. Herein, we describe fish-scale bio-inspired multifunctional ZnO nanostructures that have similar morphology and structure to the cycloid scales of the Asian Arowana. These nanostructured coatings feature tunable light refraction and reflection, modulated surface wettability and damage-tolerant mechanical properties. The salient properties of these multifunctional nanostructures are promising for applications in: - (i) optical coatings, sensing or lens arrays for use in reflective displays, packing, advertising and solar energy harvesting; - (ii) self-cleaning surfaces, including anti-smudge, anti-fouling and anti-fogging, and self-sterilizing surfaces, and; - (iii) mechanical/chemical barrier coatings. This study provides a low-cost and large-scale production method for the facile fabrication of these bio-inspired nanostructures and provides new insights for the development of novel functional materials for use in 'smart' structures and applications.
Resumo:
Yttrium silicates (Y-Si-O oxides), including Y2Si2O7, Y2SiO5, and Y4·67(SiO4)3O apatite, have attracted wide attentions from material scientists and engineers, because of their extensive polymorphisms and important roles as grain boundary phases in improving the high-temperature mechanical/thermal properties of Si3N4and SiC ceramics. Recent interest in these materials has been renewed by their potential applications as high-temperature structural ceramics, oxidation protective coatings, and environmental barrier coatings (EBCs). The salient properties of Y-Si-O oxides are strongly related to their unique chemical bonds and microstructure features. An in-depth understanding on the synthesis - multi-scale structure-property relationships of the Y-Si-O oxides will shine a light on their performance and potential applications. In this review, recent progress of the synthesis, multi-scale structures, and properties of the Y-Si-O oxides are summarised. First, various methods for the synthesis of Y-Si-O ceramics in the forms of powders, bulks, and thin films/coatings are reviewed. Then, the crystal structures, chemical bonds, and atomic microstructures of the polymorphs in the Y-Si-O system are summarised. The third section focuses on the properties of Y-Si-O oxides, involving the mechanical, thermal, dielectric, and tribological properties, their environmental stability, and their structure-property relationships. The outlook for potential applications of Y-Si-O oxides is also highlighted.
Resumo:
The 6-item Kessler Psychological Distress Scale (K6; Kessler et al., 2002) is a screener for psychological distress that has robust psychometric properties among adults. Given that a significant proportion of adolescents experience mental illness, there is a need for measures that accurately and reliably screen for mental disorders in this age group. This study examined the psychometric properties of the K6 in a large general population sample of adolescents (N = 4,434; mean age = 13.5 years; 44.6% male). Factor analyses were conducted to examine the dimensionality of the K6 in adolescents and to investigate sex-based measurement invariance. This study also evaluated the K6 as a predictor of scores on the Strengths and Difficulties Questionnaire (SDQ; Goodman, 1997). The K6 demonstrated high levels of internal consistency, with the 6 items loading primarily on 1 factor. Consistent with previous research, females reported higher mean levels of psychological distress when compared with males. The identification of sex-based measurement noninvariance in the item thresholds indicated that these mean differences most likely represented reporting bias in the K6 items rather than true differences in the underlying psychological distress construct. The K6 was a fair to good predictor of abnormal scores on the SDQ, but predictive utility was relatively low among males. Future research needs to focus on refining and augmenting the K6 scale to maximize its utility in adolescents. (PsycINFO Database Record (c) 2015 APA, all rights reserved)
Resumo:
Twitter’s hashtag functionality is now used for a very wide variety of purposes, from covering crises and other breaking news events through gathering an instant community around shared media texts (such as sporting events and TV broadcasts) to signalling emotive states from amusement to despair. These divergent uses of the hashtag are increasingly recognised in the literature, with attention paid especially to the ability for hashtags to facilitate the creation of ad hoc or hashtag publics. A more comprehensive understanding of these different uses of hashtags has yet to be developed, however. Previous research has explored the potential for a systematic analysis of the quantitative metrics that could be generated from processing a series of hashtag datasets. Such research found, for example, that crisis-related hashtags exhibited a significantly larger incidence of retweets and tweets containing URLs than hashtags relating to televised events, and on this basis hypothesised that the information-seeking and -sharing behaviours of Twitter users in such different contexts were substantially divergent. This article updates such study and their methodology by examining the communicative metrics of a considerably larger and more diverse number of hashtag datasets, compiled over the past five years. This provides an opportunity both to confirm earlier findings, as well as to explore whether hashtag use practices may have shifted subsequently as Twitter’s userbase has developed further; it also enables the identification of further hashtag types beyond the “crisis” and “mainstream media event” types outlined to date. The article also explores the presence of such patterns beyond recognised hashtags, by incorporating an analysis of a number of keyword-based datasets. This large-scale, comparative approach contributes towards the establishment of a more comprehensive typology of hashtags and their publics, and the metrics it describes will also be able to be used to classify new hashtags emerging in the future. In turn, this may enable researchers to develop systems for automatically distinguishing newly trending topics into a number of event types, which may be useful for example for the automatic detection of acute crises and other breaking news events.
Resumo:
The widespread deployment of commercial-scale cellulosic ethanol currently hinges on developing and evaluating scalable processes whilst broadening feedstock options. This study investigates whole Eucalyptus grandis trees as a potential feedstock and demonstrates dilute acid pre-treatment (with steam explosion) followed by pre-saccharification simultaneous saccharification fermentation process (PSSF) as a suitable, scalable strategy for the production of bioethanol. Biomass was pre-treated in dilute H2SO4 at laboratory scale (0.1 kg) and pilot scale (10 kg) to evaluate the effect of combined severity factor (CSF) on pre-treatment effectiveness. Subsequently, pilot-scale pre-treated residues (15 wt.%) were converted to ethanol in a PSSF process at 2 L and 300 L scales. Good polynomial correlations (n = 2) of CSF with hemicellulose removal and glucan digestibility with a minimum R2 of 0.91 were recorded. The laboratory-scale 72 h glucan digestibility and glucose yield was 68.0% and 51.3%, respectively, from biomass pre-treated at 190 °C /15 min/ 4.8 wt.% H2SO4. Pilot-scale pre-treatment (180 °C/ 15 min/2.4 wt.% H2SO4 followed by steam explosion) delivered higher glucan digestibility (71.8%) and glucose yield (63.6%). However, the ethanol yields using PSSF were calculated at 82.5 and 113 kg/ton of dry biomass for the pilot and the laboratory scales, respectively. © 2016 Society of Chemical Industry and John Wiley & Sons, Ltd
Resumo:
This paper considers the dynamic modelling and motion control of a Surface Effect Ship (SES) for safer transfer of personnel and equipment from vessel to-and-from an offshore wind-turbine. The control system designed is referred to as Boarding Control System (BCS). The performance of this system is investigated for a specific wind-farm service vessel—The Wave Craft. On a SES, the pressurized air cushion supports the majority of the weight of the vessel. The control problem considered relates to the actuation of the pressure such that wave-induced vessel motions are minimized. Results are given through simulation, model- and full-scale experimental testing.