358 resultados para APPLIED LOAD
Resumo:
This research investigated the potential of folk opera as a tool for HIV and AIDS education in Papua New Guinea. It began with an investigation on the indigenous performativities and theatricalities of Papua New Guineans, conducting an audit of eight selected performance traditions in Papua New Guinea. These traditions were analysed, and five cultural forms and twenty performance elements were drawn out for further exploration. These elements were fused and combined with theatre techniques from western theatre traditions, through a script development process involving Australians, Papua New Guineans and international collaborators. The resulting folk opera, entitled Kumul, demonstrates what Murphy (2010) has termed story force, picture force, and feeling force, in the service of a story designed to educate Papua New Guinean audiences about HIV and the need to adopt safer sexual practices. Kumul is the story of a young man faced with decisions on whether or not to engage in risky sexual behaviours. Kumul's narrative is carefully framed within selected Papua New Guinean beliefs drawn from the audit to deliver HIV and AIDS messages using symbolic and metaphoric communication techniques without offending people. The folk opera Kumul was trialled in two communities in Papua New Guinea: a village community and an urban settlement area. Kumul is recognisable to Papua New Guinean audiences because it reflects their lifestyle and a worldview, which connects them to their beliefs and spirituality, and the larger cosmological order. Feedback from audience members indicated that the performance facilitated HIV and AIDS communication, increased people's awareness of HIV and AIDS, and encouraged behaviour change. Tellingly, in one performance venue, forty people queued for Voluntary Testing and Counseling immediately after the performance. Twenty of these people were tested on that night and the other twenty were tested the following day. Many of the volunteers were young men – a demographic historically difficult to engage in HIV testing. This encouraging result indicates that the Kumul folk opera form of applied theatre could be useful for facilitating communication and education regarding sexual health and safer sexual behaviours in Papua New Guinea. Feedback from participants, audience members and other research stakeholders suggests that the form might also be adapted to address other social and development issues, particularly in the areas of health and social justice.
Resumo:
Internal heat sources may not only consume energy directly through their operation (e.g. lighting), but also contribute to building cooling or heating loads, which indirectly change building cooling and heating energy. Through the use of building simulation technique, this paper investigates the influence of building internal load densities on the energy and thermal performance of air conditioned office buildings in Australia. Case studies for air conditioned office buildings in major Australian capital cities are presented. It is found that with a decrease of internal load density in lighting and/or plug load, both the building cooling load and total energy use can be significantly reduced. Their effect on overheating hour reduction would be dependent on the local climate. In particular, it is found that if the building total internal load density is reduced from the base case of “medium” to “extra–low, the building total energy use under the future 2070 high scenario can be reduced by up to 89 to 120 kWh/m² per annum and the overheating problem could be completely avoided. It is suggested that the reduction in building internal load densities could be adopted as one of adaptation strategies for buildings in face of the future global warming.
Resumo:
Any government deciding to invoke widespread change in its higher education sector through implementation of new policies impacts on every institution and all staff and students, often in both the time taken up and the heightened emotions caused. The central phenomenon that this study addresses is the process and consequences of policy changes in higher education in Australia. The aim of this article is to record the research design through the perspective (evaluation research), theoretical framework (program evaluation) and methods (content analysis, descriptive statistical analysis and bibliometric analysis) applied to the investigation of the 2003 federal government higher education reform package. This approach allows both the intended and unintended consequences arising from the policy implementation of three national initiatives focused on learning and teaching in higher education in Australia to surface. As a result, this program evaluation, also known in some disciplines as policy implementation analysis, will demonstrate the applicability of illuminative evaluation as a methodology and reinforce how program evaluation will assist and advise future government reform and policy implementation, and will serve as a legacy for future evaluative research.Any government deciding to invoke widespread change in its higher education sector through implementation of new policies impacts on every institution and all staff and students, often in both the time taken up and the heightened emotions caused. The central phenomenon that this study addresses is the process and consequences of policy changes in higher education in Australia. The aim of this article is to record the research design through the perspective (evaluation research), theoretical framework (program evaluation) and methods (content analysis, descriptive statistical analysis and bibliometric analysis) applied to the investigation of the 2003 federal government higher education reform package. This approach allows both the intended and unintended consequences arising from the policy implementation of three national initiatives focused on learning and teaching in higher education in Australia to surface. As a result, this program evaluation, also known in some disciplines as policy implementation analysis, will demonstrate the applicability of illuminative evaluation as a methodology and reinforce how program evaluation will assist and advise future government reform and policy implementation, and will serve as a legacy for future evaluative research.
Resumo:
The finite element method in principle adaptively divides the continuous domain with complex geometry into discrete simple subdomain by using an approximate element function, and the continuous element loads are also converted into the nodal load by means of the traditional lumping and consistent load methods, which can standardise a plethora of element loads into a typical numerical procedure, but element load effect is restricted to the nodal solution. It in turn means the accurate continuous element solutions with the element load effects are merely restricted to element nodes discretely, and further limited to either displacement or force field depending on which type of approximate function is derived. On the other hand, the analytical stability functions can give the accurate continuous element solutions due to element loads. Unfortunately, the expressions of stability functions are very diverse and distinct when subjected to different element loads that deter the numerical routine for practical applications. To this end, this paper presents a displacement-based finite element function (generalised element load method) with a plethora of element load effects in the similar fashion that never be achieved by the stability function, as well as it can generate the continuous first- and second-order elastic displacement and force solutions along an element without loss of accuracy considerably as the analytical approach that never be achieved by neither the lumping nor consistent load methods. Hence, the salient and unique features of this paper (generalised element load method) embody its robustness, versatility and accuracy in continuous element solutions when subjected to the great diversity of transverse element loads.
Resumo:
In the finite element modelling of structural frames, external loads such as wind loads, dead loads and imposed loads usually act along the elements rather than at the nodes only. Conventionally, when an element is subjected to these general transverse element loads, they are usually converted to nodal forces acting at the ends of the elements by either lumping or consistent load approaches. In addition, it is especially important for an element subjected to the first- and second-order elastic behaviour, to which the steel structure is critically prone to; in particular the thin-walled steel structures, when the stocky element section may be generally critical to the inelastic behaviour. In this sense, the accurate first- and second-order elastic displacement solutions of element load effect along an element is vitally crucial, but cannot be simulated using neither numerical nodal nor consistent load methods alone, as long as no equilibrium condition is enforced in the finite element formulation, which can inevitably impair the structural safety of the steel structure particularly. It can be therefore regarded as a unique element load method to account for the element load nonlinearly. If accurate displacement solution is targeted for simulating the first- and second-order elastic behaviour on an element on the basis of sophisticated non-linear element stiffness formulation, the numerous prescribed stiffness matrices must indispensably be used for the plethora of specific transverse element loading patterns encountered. In order to circumvent this shortcoming, the present paper proposes a numerical technique to include the transverse element loading in the non-linear stiffness formulation without numerous prescribed stiffness matrices, and which is able to predict structural responses involving the effect of first-order element loads as well as the second-order coupling effect between the transverse load and axial force in the element. This paper shows that the principle of superposition can be applied to derive the generalized stiffness formulation for element load effect, so that the form of the stiffness matrix remains unchanged with respect to the specific loading patterns, but with only the magnitude of the loading (element load coefficients) being needed to be adjusted in the stiffness formulation, and subsequently the non-linear effect on element loadings can be commensurate by updating the magnitude of element load coefficients through the non-linear solution procedures. In principle, the element loading distribution is converted into a single loading magnitude at mid-span in order to provide the initial perturbation for triggering the member bowing effect due to its transverse element loads. This approach in turn sacrifices the effect of element loading distribution except at mid-span. Therefore, it can be foreseen that the load-deflection behaviour may not be as accurate as those at mid-span, but its discrepancy is still trivial as proved. This novelty allows for a very useful generalised stiffness formulation for a single higher-order element with arbitrary transverse loading patterns to be formulated. Moreover, another significance of this paper is placed on shifting the nodal response (system analysis) to both nodal and element response (sophisticated element formulation). For the conventional finite element method, such as the cubic element, all accurate solutions can be only found at node. It means no accurate and reliable structural safety can be ensured within an element, and as a result, it hinders the engineering applications. The results of the paper are verified using analytical stability function studies, as well as with numerical results reported by independent researchers on several simple frames.
Resumo:
Introduced in this paper is a Bayesian model for isolating the resonant frequency from combustion chamber resonance. The model shown in this paper focused on characterising the initial rise in the resonant frequency to investigate the rise of in-cylinder bulk temperature associated with combustion. By resolving the model parameters, it is possible to determine: the start of pre-mixed combustion, the start of diffusion combustion, the initial resonant frequency, the resonant frequency as a function of crank angle, the in-cylinder bulk temperature as a function of crank angle and the trapped mass as a function of crank angle. The Bayesian method allows for individual cycles to be examined without cycle-averaging|allowing inter-cycle variability studies. Results are shown for a turbo-charged, common-rail compression ignition engine run at 2000 rpm and full load.
Resumo:
Lecturing is a traditional method for teaching in discipline-based teaching environments and its success in legal discipline depends upon its alignment with learner backgrounds, learning objectives and the lecturing approaches utilised in the classes. In a situation where students do not have any prior knowledge of the given discipline that requires a particular lecturing approach, a mismatch in such an alignment would place learner knowledge acquisition into a challenging situation. From this perspective, this study tests the suitability of two dominant lecturing approaches—the case and the law-based lecturing approaches. It finds that a lecturer should put more emphasis on the case-based approach while lecturing to non-law background business students at the postgraduate level, provided that such an emphasis should be relative to the cognitive ability of the students and their motivation for learning law units.
Resumo:
This presentation will provide an overview of the load applied on the residuum of transfemoral amputees fitted with an osseointegrated fixation during (A) rehabilitation, including static and dynamic load bearing exercises (e.g., rowing, adduction, abduction, squat, cycling, walking with aids), and (B) activities of daily living including standardized activities (e.g., level walking in straight line and around a circle, ascending and descending slopes and stairs) and activities in real world environments.
Resumo:
This study aimed at presenting the intra-tester reliability of the static load bearing exercises (LBEs) performed by individuals with transfemoral amputation (TFA) fitted with an osseointegrated implant to stimulate the bone remodelling process. There is a need for a better understanding of the implementation of these exercises particularly the reliability. The intra-tester reliability is discussed with a particular emphasis on inter-load prescribed, inter-axis and inter-component reliabilities as well as the effect of body weight normalisation. Eleven unilateral TFAs fitted with an OPRA implant performed five trials in four loading conditions. The forces and moments on the three axes of the implant were measured directly with an instrumented pylon including a six-channel transducer. Reliability of loading variables was assessed using intraclass correlation coefficients (ICCs) and percentage standard error of measurement values (%SEMs). The ICCs of all variables were above 0.9 and the %SEM values ranged between 0 and 87%. This study showed a high between-participants’ variance highlighting the lack of loading consistency typical of symptomatic population as well as a high reliability between the loading sessions indicating a plausible correct repetition of the LBE by the participants. However, these outcomes must be understood within the framework of the proposed experimental protocol.
Resumo:
The understanding of the load applied on the residuum through the prosthesis of individuals with transfemoral amputation (TFA) is essential to address a number of concerns that could strongly reduce their quality of life (e.g., residuum skin lesion, prosthesis fitting, alignment). This inner prosthesis loading could be estimated using a typical gait laboratory relying on inverse dynamics equations. Alternative, technological advances proposed over the last decade enabled direct measurement of this kinetic information in a broad variety of situations that could potentially be more relevant in clinical settings. The purposes of this presentation are (A) to review the literature about recent developments in measure and analyses of inner prosthesis loading of TFA, and (B) to extract information that could potentially contribute to a better evidence-based practice.
Resumo:
This paper discusses the issue of sensing and control for stabilizing a swinging load. Our work has focused in particular on the dragline as used for overburden stripping in open-pit coal mining, but many of the principles would also be applicable to construction cranes. Results obtained from experimental work on a full-scale production dragline are presented.
Resumo:
The consequences of falls are often dreadful for individuals with lower limb amputation using bone-anchored prosthesis.[1-5] Typically, the impact on the fixation is responsible for bending the intercutaneous piece that could lead to a complete breakage over time. .[3, 5-8] The surgical replacement of this piece is possible but complex and expensive. Clearly, there is a need for solid data enabling an evidence-based design of protective devices limiting impact forces and torsion applied during a fall. The impact on the fixation during an actual fall is obviously difficult to record during a scientific experiment.[6, 8-13] Consequently, Schwartze and colleagues opted for one of the next best options science has to offer: simulation with an able-bodied participant. They recorded body movements and knee impacts on the floor while mimicking several plausible falling scenarios. Then, they calculated the forces and moments that would be applied at four levels along the femur corresponding to amputation heights.[6, 8-11, 14-25] The overall forces applied during the falls were similar regardless of the amputation height indicating that the impact forces were simply translated along the femur. As expected, they showed that overall moments generally increased with amputation height due to changes in lever arm. This work demonstrates that devices preventing only against force overload do not require considering amputation height while those protecting against bending moments should. Another significant contribution is to provide, for the time, the magnitude of the impact load during different falls. This loading range is crucial to the overall design and, more precisely, the triggering threshold of protective devices. Unfortunately, the analysis of only a single able-bodied participant replicating falls limits greatly the generalisation of the findings. Nonetheless, this case study is an important milestone contributing to a better understanding of load impact during a fall. This new knowledge will improve the treatment, the safe ambulation and, ultimately, the quality of life of individuals fitted with bone-anchored prosthesis.
Resumo:
Cold-formed steel members have many advantages over hot-rolled steel members. However, they are susceptible to various buckling modes at stresses below the yield stress of the member because of their relatively high width-to-thickness ratio. Web crippling is a form of localized failure mode that can occur when the members are subjected to transverse high concentrated loadings and/or reactions. The four common loading conditions are the end-one-flange (EOF), interior-one-flange (IOF), end-two-flange (ETF) and interior-two-flange (ITF) loadings. Recently a test method has been proposed by AISI to obtain the web crippling capacities under these four loading conditions. Using this test method 42 tests were conducted in this research to investigate the web crippling behaviour and strengths of unlipped channels with stocky webs under ETF and ITF cases. DuraGal sections having a nominal yield stress of 450 MPa were tested with different web slenderness and bearing lengths. The flanges of these channel sections were not fastened to the supports. In this research the suitability of the currently available design rules for unlipped channels subject to web crippling was investigated, and suitable modifications were proposed where necessary. In addition to this, a new design rule was proposed based on the direct strength method to predict the web crippling capacities of tested beams. This paper presents the details of this experimental study and the results.
Resumo:
Thin profiled steel roof sheeting and battens are increasingly used in the construction of roofing systems of residential, commercial, industrial and farm buildings in Australia. The critical load combination of external wind suction and internal wind pressures that occur during high wind events such as thunderstorms and tropical cylcones often dislocate the roofing systems partially or even completely due to premature roof connection failures. Past wind damage investigations have shown that roof sheeting failures occured at their screw connections to battens. In most of these cases, the screw fastener head pulled through the thin roof sheeting whilst the screw fasteners also pulled out from the battens. Research studis undertaken on the roof sheeting to batten connection failures have improved this situation. However, the batten to rafter or truss connections have not been investigated adequately. Failure of these connections can cause the failure of the entire roof structure as observed during the recent high wind events. Therefore a detailed experimental study consisting of both small scale and full scale tests has been undertaken to investigate the steel roof batten pull-through failures in relation to many critical parameters such as steel batten geometry, thickness and grade, screw fastener head sizes and screw tightening. This paper presents the details of this experimental study and the pull-through failure load results obtained from them. Finally it discusses the development of suitable design rules that can be used to determine the pull-through connection capacities of thin steel roof battens under wind uplift loads.
Resumo:
Intelligent Transport Systems (ITS) have the potential to substantially reduce the number of crashes caused by human errors at railway levels crossings. However, such systems could overwhelm drivers, generate different types of driver errors and have negative effects on safety at level crossing. The literature shows an increasing interest for new ITS for increasing driver situational awareness at level crossings, as well as evaluations of such new systems on compliance. To our knowledge, the potential negative effects of such technologies have not been comprehensively evaluated yet. This study aimed at assessing the effect of different ITS interventions, designed to enhance driver behaviour at railway crossings, on driver’s cognitive loads. Fifty eight participants took part in a driving simulator study in which three ITS devices were tested: an in-vehicle visual ITS, an in-vehicle audio ITS, and an on-road valet system. Driver cognitive load was objectively and subjectively assessed for each ITS intervention. Objective data were collected from a heart rate monitor and an eye tracker, while subjective data was collected with the NASA-TLX questionnaire. Overall, results indicated that the three trialled technologies did not result in significant changes in cognitive load while approaching crossings.