301 resultados para linear measurements
Resumo:
Ordinal qualitative data are often collected for phenotypical measurements in plant pathology and other biological sciences. Statistical methods, such as t tests or analysis of variance, are usually used to analyze ordinal data when comparing two groups or multiple groups. However, the underlying assumptions such as normality and homogeneous variances are often violated for qualitative data. To this end, we investigated an alternative methodology, rank regression, for analyzing the ordinal data. The rank-based methods are essentially based on pairwise comparisons and, therefore, can deal with qualitative data naturally. They require neither normality assumption nor data transformation. Apart from robustness against outliers and high efficiency, the rank regression can also incorporate covariate effects in the same way as the ordinary regression. By reanalyzing a data set from a wheat Fusarium crown rot study, we illustrated the use of the rank regression methodology and demonstrated that the rank regression models appear to be more appropriate and sensible for analyzing nonnormal data and data with outliers.
Resumo:
This paper proposes a linear quantile regression analysis method for longitudinal data that combines the between- and within-subject estimating functions, which incorporates the correlations between repeated measurements. Therefore, the proposed method results in more efficient parameter estimation relative to the estimating functions based on an independence working model. To reduce computational burdens, the induced smoothing method is introduced to obtain parameter estimates and their variances. Under some regularity conditions, the estimators derived by the induced smoothing method are consistent and have asymptotically normal distributions. A number of simulation studies are carried out to evaluate the performance of the proposed method. The results indicate that the efficiency gain for the proposed method is substantial especially when strong within correlations exist. Finally, a dataset from the audiology growth research is used to illustrate the proposed methodology.
Resumo:
Previous studies have shown that the external growth records of the posterior adductor muscle scar (PAMS) of the bivalve Pinna nobilis are incomplete and do not produce accurate age estimations. We have developed a new methodology to study age and growth using the inner record of the PAMS, which avoids the necessity of costly in situ shell measurements or isotopic studies. Using the inner record we identified the positions of PAMS previously obscured by nacre and estimated the number of missing records in adult specimens with strong abrasion of the calcite layer in the anterior portion of the shell. The study of the PAMS and inner record of two shells that were 6 years old when collected showed that only 2 and 3 PAMS were observed, while 6 inner records could be counted, thus confirming our working methodology. Growth parameters of a P. nobilis population located in Moraira, Spain (western Mediterranean) were estimated with the new methodology and compared to those obtained using PAMS data and in situ measurements. For the comparisons, we applied different models considering the data alternatively as length-at-age (LA) and tag-recapture (TR). Among every method we tested to fit the Von Bertalanffy growth model, we observed that LA data from inner record fitted to the model using non-linear mixed effects and the estimation of missing records using the calcite width was the most appropriate. The equation obtained with this method, L = 573*(1 - e(-0.16(t-0.02))), is very similar to that calculated previously from in situ measurements for the same population.
Resumo:
Environmental data usually include measurements, such as water quality data, which fall below detection limits, because of limitations of the instruments or of certain analytical methods used. The fact that some responses are not detected needs to be properly taken into account in statistical analysis of such data. However, it is well-known that it is challenging to analyze a data set with detection limits, and we often have to rely on the traditional parametric methods or simple imputation methods. Distributional assumptions can lead to biased inference and justification of distributions is often not possible when the data are correlated and there is a large proportion of data below detection limits. The extent of bias is usually unknown. To draw valid conclusions and hence provide useful advice for environmental management authorities, it is essential to develop and apply an appropriate statistical methodology. This paper proposes rank-based procedures for analyzing non-normally distributed data collected at different sites over a period of time in the presence of multiple detection limits. To take account of temporal correlations within each site, we propose an optimal linear combination of estimating functions and apply the induced smoothing method to reduce the computational burden. Finally, we apply the proposed method to the water quality data collected at Susquehanna River Basin in United States of America, which dearly demonstrates the advantages of the rank regression models.
Resumo:
We propose an iterative estimating equations procedure for analysis of longitudinal data. We show that, under very mild conditions, the probability that the procedure converges at an exponential rate tends to one as the sample size increases to infinity. Furthermore, we show that the limiting estimator is consistent and asymptotically efficient, as expected. The method applies to semiparametric regression models with unspecified covariances among the observations. In the special case of linear models, the procedure reduces to iterative reweighted least squares. Finite sample performance of the procedure is studied by simulations, and compared with other methods. A numerical example from a medical study is considered to illustrate the application of the method.
Resumo:
Statistical methods are often used to analyse commercial catch and effort data to provide standardised fishing effort and/or a relative index of fish abundance for input into stock assessment models. Achieving reliable results has proved difficult in Australia's Northern Prawn Fishery (NPF), due to a combination of such factors as the biological characteristics of the animals, some aspects of the fleet dynamics, and the changes in fishing technology. For this set of data, we compared four modelling approaches (linear models, mixed models, generalised estimating equations, and generalised linear models) with respect to the outcomes of the standardised fishing effort or the relative index of abundance. We also varied the number and form of vessel covariates in the models. Within a subset of data from this fishery, modelling correlation structures did not alter the conclusions from simpler statistical models. The random-effects models also yielded similar results. This is because the estimators are all consistent even if the correlation structure is mis-specified, and the data set is very large. However, the standard errors from different models differed, suggesting that different methods have different statistical efficiency. We suggest that there is value in modelling the variance function and the correlation structure, to make valid and efficient statistical inferences and gain insight into the data. We found that fishing power was separable from the indices of prawn abundance only when we offset the impact of vessel characteristics at assumed values from external sources. This may be due to the large degree of confounding within the data, and the extreme temporal changes in certain aspects of individual vessels, the fleet and the fleet dynamics.
Resumo:
The stable free radical 1,1,3,3-tetramethylisoindolin-2-yloxyl (TMIO) has proved to be very suitable for use as a spin probe for a number of applications. Because it is soluble mainly in non-polar liquids, there is a need for new derivatives that can be used in a variety of environments. This has been done by introducing substituents in the 5-position of the aromatic ring, namely carboxyl (CTMIO), trimethylamino (TMTMIOI) and sodium sulphonate (NaTMIOS). An accurate ESR method was developed for the measurement of partition coefficients in n-octanol–water. For comparison purposes the method was also applied to some Tempo derivatives. The effect of temperature on the rotational correlation times and the nitrogen-14 hyperfine coupling constant of some of the spin probes was investigated. There is evidence for dimerization of CTMIO to form a biradical
Resumo:
This paper presents an approach, based on Lean production philosophy, for rationalising the processes involved in the production of specification documents for construction projects. Current construction literature erroneously depicts the process for the creation of construction specifications as a linear one. This traditional understanding of the specification process often culminates in process-wastes. On the contrary, the evidence suggests that though generalised, the activities involved in producing specification documents are nonlinear. Drawing on the outcome of participant observation, this paper presents an optimised approach for representing construction specifications. Consequently, the actors typically involved in producing specification documents are identified, the processes suitable for automation are highlighted and the central role of tacit knowledge is integrated into a conceptual template of construction specifications. By applying the transformation, flow, value (TFV) theory of Lean production the paper argues that value creation can be realised by eliminating the wastes associated with the traditional preparation of specification documents with a view to integrating specifications in digital models such as Building Information Models (BIM). Therefore, the paper presents an approach for rationalising the TFV theory as a method for optimising current approaches for generating construction specifications based on a revised specification writing model.
Resumo:
Embryonic development involves diffusion and proliferation of cells, as well as diffusion and reaction of molecules, within growing tissues. Mathematical models of these processes often involve reaction–diffusion equations on growing domains that have been primarily studied using approximate numerical solutions. Recently, we have shown how to obtain an exact solution to a single, uncoupled, linear reaction–diffusion equation on a growing domain, 0 < x < L(t), where L(t) is the domain length. The present work is an extension of our previous study, and we illustrate how to solve a system of coupled reaction–diffusion equations on a growing domain. This system of equations can be used to study the spatial and temporal distributions of different generations of cells within a population that diffuses and proliferates within a growing tissue. The exact solution is obtained by applying an uncoupling transformation, and the uncoupled equations are solved separately before applying the inverse uncoupling transformation to give the coupled solution. We present several example calculations to illustrate different types of behaviour. The first example calculation corresponds to a situation where the initially–confined population diffuses sufficiently slowly that it is unable to reach the moving boundary at x = L(t). In contrast, the second example calculation corresponds to a situation where the initially–confined population is able to overcome the domain growth and reach the moving boundary at x = L(t). In its basic format, the uncoupling transformation at first appears to be restricted to deal only with the case where each generation of cells has a distinct proliferation rate. However, we also demonstrate how the uncoupling transformation can be used when each generation has the same proliferation rate by evaluating the exact solutions as an appropriate limit.
Resumo:
Many processes during embryonic development involve transport and reaction of molecules, or transport and proliferation of cells, within growing tissues. Mathematical models of such processes usually take the form of a reaction-diffusion partial differential equation (PDE) on a growing domain. Previous analyses of such models have mainly involved solving the PDEs numerically. Here, we present a framework for calculating the exact solution of a linear reaction-diffusion PDE on a growing domain. We derive an exact solution for a general class of one-dimensional linear reaction—diffusion process on 0
Resumo:
In the fields of organic electronics and biotechnology, applications for organic polymer thin films fabricated using low-temperature non-equilibrium plasma techniques are gaining significant attention because of the physical and chemical stability of thin films and the low cost of production. Polymer thin films were fabricated from non-synthetic terpinen-4-ol using radiofrequency polymerization (13.56 MHz) on low loss dielectric substrates and their permittivity properties were ascertained to determine potential applications for these organic films. Real and imaginary parts of permittivity as a function of frequency were measured using the variable angle spectroscopic ellipsometer. The real part of permittivity (k) was found to be between 2.34 and 2.65 in the wavelength region of 400–1100 nm, indicating a potential low-k material. These permittivity values were confirmed at microwave frequencies. Dielectric properties of polyterpenol films were measured by means of split post dielectric resonators (SPDRs) operating at frequencies of 10 GHz and 20 GHz. Permittivity increased for samples deposited at higher RF energy – from 2.65 (25 W) to 2.83 (75 W) measured by a 20-GHz SPDR and from 2.32 (25 W) to 2.53 (100 W) obtained using a 10-GHz SPDR. The error in permittivity measurement was predominantly attributed to the uncertainty in film thickness measurement.
Resumo:
Using polynomial regression and response surface analysis to examine the non-linearity between variables, this study demonstrates that better analytical nuances are required to investigate the relationships between constructs when the underlying theories suggest non-linearity. By utilising the Theory of Planned Behaviour (TPB), Ettlie’s adoption stages as well as employing data gathered from 162 owners of Small and Medium-sized Enterprises (SMEs), our findings reveal that subjective norms and attitude have differing influences upon behavioural intention in both the evaluation and trial stages of the adoption.
Resumo:
A spatial sampling design that uses pair-copulas is presented that aims to reduce prediction uncertainty by selecting additional sampling locations based on both the spatial configuration of existing locations and the values of the observations at those locations. The novelty of the approach arises in the use of pair-copulas to estimate uncertainty at unsampled locations. Spatial pair-copulas are able to more accurately capture spatial dependence compared to other types of spatial copula models. Additionally, unlike traditional kriging variance, uncertainty estimates from the pair-copula account for influence from measurement values and not just the configuration of observations. This feature is beneficial, for example, for more accurate identification of soil contamination zones where high contamination measurements are located near measurements of varying contamination. The proposed design methodology is applied to a soil contamination example from the Swiss Jura region. A partial redesign of the original sampling configuration demonstrates the potential of the proposed methodology.
Resumo:
This research constructed a readability measurement for French speakers who view English as a second language. It identified the true cognates, which are the similar words from these two languages, as an indicator of the difficulty of an English text for French people. A multilingual lexical resource is used to detect true cognates in text, and Statistical Language Modelling to predict the predict the readability level. The proposed enhanced statistical language model is making a step in the right direction by improving the accuracy of readability predictions for French speakers by up to 10% compared to state of the art approaches. The outcome of this study could accelerate the learning process for French speakers who are studying English. More importantly, this study also benefits the readability estimation research community, presenting an approach and evaluation at sentence level as well as innovating with the use of cognates as a new text feature.
Resumo:
The purpose of this study is to investigate the accounting choice decisions of banks to employ Level 3 inputs in estimating the value of their financial assets and liabilities. Using a sample of 146 bank-year observations from 18 countries over 2009-2012, this study finds banks’ incentives to use Level 3 valuation inputs are associated with both firm-level and country-level determinants. At the firm-level, leverage, profitability (in term of net income), Tier 1 capital ratio, size and audit committee independence are associated with the percentage of Level 3 valuation inputs. At the country-level, economy development, legal region, legal enforcement and investor rights are also associated with the Level 3 classification choice. Lastly, ‘secrecy’, the proxy for culture dimensions and values, is found to be positively associated with the use of Level 3 valuation inputs. Altogether, these findings suggest that banks use the discretion available under Level 3 inputs opportunistically to avoid violating debt covenants limits, to increase earnings and manage their capital ratios. Results of this study also highlight that corporate governance quality at the firm-level (e.g. audit committee independence) and institutional features can constrain banks’ opportunistic behaviors in using the discretion available under Level 3 inputs. The results of this study have important implications for standard setters and contribute to the debate on the use of fair value accounting in an international context.