307 resultados para empirical correlation
Resumo:
Selection criteria and misspecification tests for the intra-cluster correlation structure (ICS) in longitudinal data analysis are considered. In particular, the asymptotical distribution of the correlation information criterion (CIC) is derived and a new method for selecting a working ICS is proposed by standardizing the selection criterion as the p-value. The CIC test is found to be powerful in detecting misspecification of the working ICS structures, while with respect to the working ICS selection, the standardized CIC test is also shown to have satisfactory performance. Some simulation studies and applications to two real longitudinal datasets are made to illustrate how these criteria and tests might be useful.
Resumo:
This paper proposes a linear quantile regression analysis method for longitudinal data that combines the between- and within-subject estimating functions, which incorporates the correlations between repeated measurements. Therefore, the proposed method results in more efficient parameter estimation relative to the estimating functions based on an independence working model. To reduce computational burdens, the induced smoothing method is introduced to obtain parameter estimates and their variances. Under some regularity conditions, the estimators derived by the induced smoothing method are consistent and have asymptotically normal distributions. A number of simulation studies are carried out to evaluate the performance of the proposed method. The results indicate that the efficiency gain for the proposed method is substantial especially when strong within correlations exist. Finally, a dataset from the audiology growth research is used to illustrate the proposed methodology.
Resumo:
A modeling paradigm is proposed for covariate, variance and working correlation structure selection for longitudinal data analysis. Appropriate selection of covariates is pertinent to correct variance modeling and selecting the appropriate covariates and variance function is vital to correlation structure selection. This leads to a stepwise model selection procedure that deploys a combination of different model selection criteria. Although these criteria find a common theoretical root based on approximating the Kullback-Leibler distance, they are designed to address different aspects of model selection and have different merits and limitations. For example, the extended quasi-likelihood information criterion (EQIC) with a covariance penalty performs well for covariate selection even when the working variance function is misspecified, but EQIC contains little information on correlation structures. The proposed model selection strategies are outlined and a Monte Carlo assessment of their finite sample properties is reported. Two longitudinal studies are used for illustration.
Resumo:
Objective To discuss generalized estimating equations as an extension of generalized linear models by commenting on the paper of Ziegler and Vens "Generalized Estimating Equations. Notes on the Choice of the Working Correlation Matrix". Methods Inviting an international group of experts to comment on this paper. Results Several perspectives have been taken by the discussants. Econometricians have established parallels to the generalized method of moments (GMM). Statisticians discussed model assumptions and the aspect of missing data Applied statisticians; commented on practical aspects in data analysis. Conclusions In general, careful modeling correlation is encouraged when considering estimation efficiency and other implications, and a comparison of choosing instruments in GMM and generalized estimating equations, (GEE) would be worthwhile. Some theoretical drawbacks of GEE need to be further addressed and require careful analysis of data This particularly applies to the situation when data are missing at random.
Resumo:
The method of generalized estimating equations (GEEs) provides consistent estimates of the regression parameters in a marginal regression model for longitudinal data, even when the working correlation model is misspecified (Liang and Zeger, 1986). However, the efficiency of a GEE estimate can be seriously affected by the choice of the working correlation model. This study addresses this problem by proposing a hybrid method that combines multiple GEEs based on different working correlation models, using the empirical likelihood method (Qin and Lawless, 1994). Analyses show that this hybrid method is more efficient than a GEE using a misspecified working correlation model. Furthermore, if one of the working correlation structures correctly models the within-subject correlations, then this hybrid method provides the most efficient parameter estimates. In simulations, the hybrid method's finite-sample performance is superior to a GEE under any of the commonly used working correlation models and is almost fully efficient in all scenarios studied. The hybrid method is illustrated using data from a longitudinal study of the respiratory infection rates in 275 Indonesian children.
Resumo:
Selecting an appropriate working correlation structure is pertinent to clustered data analysis using generalized estimating equations (GEE) because an inappropriate choice will lead to inefficient parameter estimation. We investigate the well-known criterion of QIC for selecting a working correlation Structure. and have found that performance of the QIC is deteriorated by a term that is theoretically independent of the correlation structures but has to be estimated with an error. This leads LIS to propose a correlation information criterion (CIC) that substantially improves the QIC performance. Extensive simulation studies indicate that the CIC has remarkable improvement in selecting the correct correlation structures. We also illustrate our findings using a data set from the Madras Longitudinal Schizophrenia Study.
Resumo:
Efficiency of analysis using generalized estimation equations is enhanced when intracluster correlation structure is accurately modeled. We compare two existing criteria (a quasi-likelihood information criterion, and the Rotnitzky-Jewell criterion) to identify the true correlation structure via simulations with Gaussian or binomial response, covariates varying at cluster or observation level, and exchangeable or AR(l) intracluster correlation structure. Rotnitzky and Jewell's approach performs better when the true intracluster correlation structure is exchangeable, while the quasi-likelihood criteria performs better for an AR(l) structure.
Resumo:
The method of generalized estimating equation-, (GEEs) has been criticized recently for a failure to protect against misspecification of working correlation models, which in some cases leads to loss of efficiency or infeasibility of solutions. However, the feasibility and efficiency of GEE methods can be enhanced considerably by using flexible families of working correlation models. We propose two ways of constructing unbiased estimating equations from general correlation models for irregularly timed repeated measures to supplement and enhance GEE. The supplementary estimating equations are obtained by differentiation of the Cholesky decomposition of the working correlation, or as score equations for decoupled Gaussian pseudolikelihood. The estimating equations are solved with computational effort equivalent to that required for a first-order GEE. Full details and analytic expressions are developed for a generalized Markovian model that was evaluated through simulation. Large-sample ".sandwich" standard errors for working correlation parameter estimates are derived and shown to have good performance. The proposed estimating functions are further illustrated in an analysis of repeated measures of pulmonary function in children.
Resumo:
The method of generalised estimating equations for regression modelling of clustered outcomes allows for specification of a working matrix that is intended to approximate the true correlation matrix of the observations. We investigate the asymptotic relative efficiency of the generalised estimating equation for the mean parameters when the correlation parameters are estimated by various methods. The asymptotic relative efficiency depends on three-features of the analysis, namely (i) the discrepancy between the working correlation structure and the unobservable true correlation structure, (ii) the method by which the correlation parameters are estimated and (iii) the 'design', by which we refer to both the structures of the predictor matrices within clusters and distribution of cluster sizes. Analytical and numerical studies of realistic data-analysis scenarios show that choice of working covariance model has a substantial impact on regression estimator efficiency. Protection against avoidable loss of efficiency associated with covariance misspecification is obtained when a 'Gaussian estimation' pseudolikelihood procedure is used with an AR(1) structure.
Resumo:
Some studies suggested that adequate vitamin D might reduce inflammation in adults. However, little is known about this association in early life. We aimed to determine the relationship between cord blood 25-hydroxyvitamin D (25(OH)D) and C-reactive protein (CRP) in neonates. Cord blood levels of 25(OH)D and CRP were measured in 1491 neonates in Hefei, China. Potential confounders including maternal sociodemographic characteristics, perinatal health status, lifestyle, and birth outcomes were prospectively collected. The average values of cord blood 25(OH)D and CRP were 39.43 nmol/L (SD = 20.35) and 6.71 mg/L (SD = 3.07), respectively. Stratified by 25(OH)D levels, per 10 nmol/L increase in 25(OH)D, CRP decreased by 1.42 mg/L (95% CI: 0.90, 1.95) among neonates with 25(OH)D <25.0 nmol/L, and decreased by 0.49 mg/L (95% CI: 0.17, 0.80) among neonates with 25(OH)D between 25.0 nmol/L and 49.9 nmol/L, after adjusting for potential confounders. However, no significant association between 25(OH)D and CRP was observed among neonates with 25(OH)D ≥50 nmol/L. Cord blood 25(OH)D and CRP levels showed a significant seasonal trend with lower 25(OH)D and higher CRP during winter-spring than summer-autumn. Stratified by season, a significant linear association of 25(OH)D with CRP was observed in neonates born in winter-spring (adjusted β = −0.11, 95% CI: −0.13, −0.10), but not summer-autumn. Among neonates born in winter-spring, neonates with 25(OH)D <25 nmol/L had higher risk of CRP ≥10 mg/L (adjusted OR = 3.06, 95% CI: 2.00, 4.69), compared to neonates with 25(OH)D ≥25 nmol/L. Neonates with vitamin D deficiency had higher risk of exposure to elevated inflammation at birth.
Resumo:
Images from cell biology experiments often indicate the presence of cell clustering, which can provide insight into the mechanisms driving the collective cell behaviour. Pair-correlation functions provide quantitative information about the presence, or absence, of clustering in a spatial distribution of cells. This is because the pair-correlation function describes the ratio of the abundance of pairs of cells, separated by a particular distance, relative to a randomly distributed reference population. Pair-correlation functions are often presented as a kernel density estimate where the frequency of pairs of objects are grouped using a particular bandwidth (or bin width), Δ>0. The choice of bandwidth has a dramatic impact: choosing Δ too large produces a pair-correlation function that contains insufficient information, whereas choosing Δ too small produces a pair-correlation signal dominated by fluctuations. Presently, there is little guidance available regarding how to make an objective choice of Δ. We present a new technique to choose Δ by analysing the power spectrum of the discrete Fourier transform of the pair-correlation function. Using synthetic simulation data, we confirm that our approach allows us to objectively choose Δ such that the appropriately binned pair-correlation function captures known features in uniform and clustered synthetic images. We also apply our technique to images from two different cell biology assays. The first assay corresponds to an approximately uniform distribution of cells, while the second assay involves a time series of images of a cell population which forms aggregates over time. The appropriately binned pair-correlation function allows us to make quantitative inferences about the average aggregate size, as well as quantifying how the average aggregate size changes with time.
Resumo:
Most psychiatric disorders are moderately to highly heritable. The degree to which genetic variation is unique to individual disorders or shared across disorders is unclear. To examine shared genetic etiology, we use genome-wide genotype data from the Psychiatric Genomics Consortium (PGC) for cases and controls in schizophrenia, bipolar disorder, major depressive disorder, autism spectrum disorders (ASD) and attention-deficit/hyperactivity disorder (ADHD). We apply univariate and bivariate methods for the estimation of genetic variation within and covariation between disorders. SNPs explained 17-29% of the variance in liability. The genetic correlation calculated using common SNPs was high between schizophrenia and bipolar disorder (0.68 +/- 0.04 s.e.), moderate between schizophrenia and major depressive disorder (0.43 +/- 0.06 s.e.), bipolar disorder and major depressive disorder (0.47 +/- 0.06 s.e.), and ADHD and major depressive disorder (0.32 +/- 0.07 s.e.), low between schizophrenia and ASD (0.16 +/- 0.06 s.e.) and non-significant for other pairs of disorders as well as between psychiatric disorders and the negative control of Crohn's disease. This empirical evidence of shared genetic etiology for psychiatric disorders can inform nosology and encourages the investigation of common pathophysiologies for related disorders.
Resumo:
A significant amount of research has been carried out to investigate the existing bonds between team characteristics and team outcomes in contexts of social creativity. Specifically, how work group diversity affects its performance is of great relevance but unfortunately, there is no clear understanding of the diversity-performance relationship. Therefore, to improve our understanding of this phenomenon, it would be worthwhile to investigate further empirical settings. For this reason, we decided to study the music industry that, to our knowledge, has never been chosen as empirical setting for the application of the theoretical constructs linked to the topic of team diversity and performance. Our research aims at analyze the US music industry to study the relationship between job-related characteristics of team diversity and team performances.
Resumo:
This paper provides a first look at the acceptance of Accountable-eHealth (AeH) systems–a new genre of eHealth systems designed to manage information privacy concerns that hinder the proliferation of eHealth. The underlying concept of AeH systems is appropriate use of information through after-the-fact accountability for intentional misuse of information by healthcare professionals. An online questionnaire survey was utilised for data collection from three educational institutions in Queensland, Australia. A total of 23 hypotheses relating to 9 constructs were tested using a structural equation modelling technique. The moderation effects on the hypotheses were also tested based on six moderation factors to understand their role on the designed research model. A total of 334 valid responses were received. The cohort consisted of medical, nursing and other health related students studying at various levels in both undergraduate and postgraduate courses. Hypothesis testing provided sufficient data to accept 7 hypotheses. The empirical research model developed was capable of predicting 47.3% of healthcare professionals’ perceived intention to use AeH systems. All six moderation factors showed significant influence on the research model. A validation of this model with a wider survey cohort is recommended as a future study.