382 resultados para Empirical Mode Decomposition
Resumo:
Real world business process models may consist of hundreds of elements and have sophisticated structure. Although there are tasks where such models are valuable and appreciated, in general complexity has a negative influence on model comprehension and analysis. Thus, means for managing the complexity of process models are needed. One approach is abstraction of business process models-creation of a process model which preserves the main features of the initial elaborate process model, but leaves out insignificant details. In this paper we study the structural aspects of process model abstraction and introduce an abstraction approach based on process structure trees (PST). The developed approach assures that the abstracted process model preserves the ordering constraints of the initial model. It surpasses pattern-based process model abstraction approaches, allowing to handle graph-structured process models of arbitrary structure. We also provide an evaluation of the proposed approach.
Resumo:
Identification of behavioural contradictions is an important aspect of software engineering, in particular for checking the consistency between a business process model used as system specification and a corresponding workflow model used as implementation. In this paper, we propose causal behavioural profiles as the basis for a consistency notion, which capture essential behavioural information, such as order, exclusiveness, and causality between pairs of activities. Existing notions of behavioural equivalence, such as bisimulation and trace equivalence, might also be applied as consistency notions. Still, they are exponential in computation. Our novel concept of causal behavioural profiles provides a weaker behavioural consistency notion that can be computed efficiently using structural decomposition techniques for sound free-choice workflow systems if unstructured net fragments are acyclic or can be traced back to S- or T-nets.
Resumo:
We present PAC-Bayes-Empirical-Bernstein inequality. The inequality is based on combination of PAC-Bayesian bounding technique with Empirical Bernstein bound. It allows to take advantage of small empirical variance and is especially useful in regression. We show that when the empirical variance is significantly smaller than the empirical loss PAC-Bayes-Empirical-Bernstein inequality is significantly tighter than PAC-Bayes-kl inequality of Seeger (2002) and otherwise it is comparable. PAC-Bayes-Empirical-Bernstein inequality is an interesting example of application of PAC-Bayesian bounding technique to self-bounding functions. We provide empirical comparison of PAC-Bayes-Empirical-Bernstein inequality with PAC-Bayes-kl inequality on a synthetic example and several UCI datasets.
Resumo:
The Macroscopic Fundamental Diagram (MFD) relates space-mean density and flow, and the existence with dynamic features was confirmed in congested urban network in downtown Yokohama with real data set. Since the MFD represents the area-wide network traffic performances, studies on perimeter control strategies and an area traffic state estimation utilizing the MFD concept has been reported. However, limited works have been reported on real world example from signalised arterial network. This paper fuses data from multiple sources (Bluetooth, Loops and Signals) and presents a framework for the development of the MFD for Brisbane, Australia. Existence of the MFD in Brisbane arterial network is confirmed. Different MFDs (from whole network and several sub regions) are evaluated to discover the spatial partitioning for network performance representation. The findings confirmed the usefulness of appropriate network partitioning for traffic monitoring and incident detections. The discussion addressed future research directions.
Resumo:
This paper presents a novel framework to further advance the recent trend of using query decomposition and high-order term relationships in query language modeling, which takes into account terms implicitly associated with different subsets of query terms. Existing approaches, most remarkably the language model based on the Information Flow method are however unable to capture multiple levels of associations and also suffer from a high computational overhead. In this paper, we propose to compute association rules from pseudo feedback documents that are segmented into variable length chunks via multiple sliding windows of different sizes. Extensive experiments have been conducted on various TREC collections and our approach significantly outperforms a baseline Query Likelihood language model, the Relevance Model and the Information Flow model.
Resumo:
Alkyl hydroperoxides (ROOH) are attributed a key role in the biochemical oxidation of lipids during oxidative stress.1 In this chemistry ROOH compounds, where the R groups are unsaturated fatty acids, are viewed as transient ntermediates which are readily degraded, due to the lability of the RO-OH bond, to yield potentially genotoxic aldehydes and ketones.2 Generally, the decomposition of alkyl hydroperoxides is thought to be mediated by radical abstraction or electron transfer processes usually involving enzymes, transition metals, or recently, Vitamin C.3 In this paper we present the first unambiguous experimental and computational evidence for base-mediated heterolytic decomposition of simple alkyl hydroperoxides by the mechanism outlined in Scheme 1.
Resumo:
The E-CO(2) elimination reactions of alkyl hydroperoxides proceed via abstraction of an (x-hydrogen by a base: X- + (RRHCOOH)-R-1-H-2 -> HX + (RRC)-R-1-C-2=O + HO-. Efficiencies and product distributions for the reactions of the hydroxide anion with methyl, ethyl, and tert-butyl hydroperoxides are studied in the gas phase. On the basis of experiments using three isotopic analogues, HO- + CH3OOH, HO- + CD3OOH, and H18O- + CH3OOH. the overall intrinsic reaction efficiency is determined to be 80% or greater. The E(CO)2 decomposition is facile for these methylperoxide reactions, and predominates over competing proton transfer at the hydroperoxide moiety. The CH3CH2OOH reaction displays a similar E(CO)2 reactivity, whereas proton transfer and the formation of HOO- are the exclusive pathways observed for (CH3)(3)COOH, which has no (x-hydrogen. All results are consistent with the E-CO(2) mechanism, transition state structure, and reaction energy diagrams calculated using the hybrid density functional B3LYP approach. Isotope labeling for HO- + CH3OOH also reveals some interaction between H2O and HO- within the E(CO)2 product complex [H2O center dot center dot center dot CH2=O center dot center dot center dot HO-]. There is little evidence, however. for the formation of the most exothermic products H2O + CH2(OH)O-, which would arise from nuclephilic condensation of CH2=O and HO-. The results suggest that the product dynamics are not totally statistical but are rather direct after the E-CO(2) transition state. The larger HO- + CH3CH2OOH system displays more statistical behavior during complex dissociation.
Resumo:
This study presents a general approach to identify dominant oscillation modes in bulk power system by using wide-area measurement system. To automatically identify the dominant modes without artificial participation, spectral characteristic of power system oscillation mode is applied to distinguish electromechanical oscillation modes which are calculated by stochastic subspace method, and a proposed mode matching pursuit is adopted to discriminate the dominant modes from the trivial modes, then stepwise-refinement scheme is developed to remove outliers of the dominant modes and the highly accurate dominant modes of identification are obtained. The method is implemented on the dominant modes of China Southern Power Grid which is one of the largest AC/DC paralleling grids in the world. Simulation data and field-measurement data are used to demonstrate high accuracy and better robustness of the dominant modes identification approach.
Resumo:
Background Heatwaves could cause the population excess death numbers to be ranged from tens to thousands within a couple of weeks in a local area. An excess mortality due to a special event (e.g., a heatwave or an epidemic outbreak) is estimated by subtracting the mortality figure under ‘normal’ conditions from the historical daily mortality records. The calculation of the excess mortality is a scientific challenge because of the stochastic temporal pattern of the daily mortality data which is characterised by (a) the long-term changing mean levels (i.e., non-stationarity); (b) the non-linear temperature-mortality association. The Hilbert-Huang Transform (HHT) algorithm is a novel method originally developed for analysing the non-linear and non-stationary time series data in the field of signal processing, however, it has not been applied in public health research. This paper aimed to demonstrate the applicability and strength of the HHT algorithm in analysing health data. Methods Special R functions were developed to implement the HHT algorithm to decompose the daily mortality time series into trend and non-trend components in terms of the underlying physical mechanism. The excess mortality is calculated directly from the resulting non-trend component series. Results The Brisbane (Queensland, Australia) and the Chicago (United States) daily mortality time series data were utilized for calculating the excess mortality associated with heatwaves. The HHT algorithm estimated 62 excess deaths related to the February 2004 Brisbane heatwave. To calculate the excess mortality associated with the July 1995 Chicago heatwave, the HHT algorithm needed to handle the mode mixing issue. The HHT algorithm estimated 510 excess deaths for the 1995 Chicago heatwave event. To exemplify potential applications, the HHT decomposition results were used as the input data for a subsequent regression analysis, using the Brisbane data, to investigate the association between excess mortality and different risk factors. Conclusions The HHT algorithm is a novel and powerful analytical tool in time series data analysis. It has a real potential to have a wide range of applications in public health research because of its ability to decompose a nonlinear and non-stationary time series into trend and non-trend components consistently and efficiently.
Resumo:
This thesis is an empirical study of the factors impacting on the client involvement in Saudi Arabian construction government projects. The study investigated the impact of some factors that limited the client involvement and developed a framework called "client involvement interactive" to improve the client involvement practices in Saudi Arabian construction projects through the implementation of an implementable strategy elaborated.
Resumo:
A series of styrene-butadiene rubber (SBR) nanocomposites filledwith different particle sized kaolinites are prepared via a latex blending method. The thermal stabilities of these clay polymer nanocomposites (CPN) are characterized by a range of techniques including thermogravimetry (TG), digital photos, scanning electron microscopy (SEM) and Raman spectroscopy. These CPN show some remarkable improvement in thermal stability compared to that of the pure SBR. With the increase of kaolinite particle size, the residual char content and the average activation energy of kaolinite SBR nanocomposites all decrease; the pyrolysis residues become porous; the crystal carbon in the pyrolysis residues decrease significantly from 58.23% to 44.41%. The above results prove that the increase of kaolinite particle size is not beneficial in improving the thermal stability of kaolinite SBR nanocomposites.
Resumo:
The aim of this study was to evaluate the factor structure of the Baby Eating Behaviour Questionnaire (BEBQ) in an Australian community sample of mother-infant dyads. A secondary aim was to explore the relationship between the BEBQ subscales and infant gender, weight and current feeding mode. Confirmatory factor analysis (CFA) utilising structural equation modelling examined the hypothesised 4-factor model of the BEBQ. Only mothers (N=467) who completed all items on the BEBQ (infant age: M=17 weeks, SD=3 weeks) were included in the analysis. The original 4-factor model did not provide an acceptable fit to the data due to poor performance of the Satiety responsiveness factor. Removal of this factor (3 items) resulted in a well-fitting 3-factor model. Cronbach’s α was acceptable for the Enjoyment of food (α=0.73), Food responsiveness (α=0.78) and Slowness in eating (α=0.68) subscales but low for the Satiety responsiveness (α=0.56) subscale. Enjoyment of food was associated with higher infant weight whereas Slowness in eating and Satiety responsiveness were both associated with lower infant weight. Differences on all four subscales as a function of feeding mode were observed. This study is the first to use CFA to evaluate the hypothesised factor structure of the BEBQ. Findings support further development work on the Satiety responsiveness subscale in particular, but confirm the utility of the Enjoyment of food, Food responsiveness and Slowness in eating subscales.
Resumo:
The dynamics of transitions between the electrostatic and electromagnetic discharge modes of the low-frequency (460 kHz) inductively coupled plasma (LF ICP) reactor is studied. A series of images of plasma glows in Ar and N2 gases taken in the process of continuous variation of the input power confirms the discharge bistability and hysteresis. The operation regimes and parameters making the LF ICP reactor attractive for materials synthesis and processing applications are discussed.
Resumo:
Operation and mode jumps in low-frequency (500 kHz) radio-frequency inductively coupled plasmas are investigated. The discharge is driven by a flat inductive coil which can excite the electrostatic (E) and electromagnetic (H) discharge modes. The power transfer efficiency and mode transition behavior are studied. It is found that the power reflection coefficient as a function of the input power is minimal in the vicinity of the mode transitions and exhibits hysteresis, which is also observed when the operating gas pressure is varied.
Resumo:
Turning points for transitions between the electrostatic and electromagnetic discharge modes in low-frequency (∼ 500 kHz) inductively coupled plasmas have been identified and cross-referenced using time-resolved measurements of the plasma optical emission intensities, RF coil current, and ion saturation current collected by a single RF-compensated Langmuir probe. This enables one to monitor the variation of the plasma parameters, power transfer efficiency, which accompany the discharge hysteresis. The excitation conditions for the pure and hybrid modes in the plasma are considered, and the possibility of the TMmnl → TEm'n'l' transitions at higher frequencies are discussed.