637 resultados para ENGINEERING, MARINE
Resumo:
Skipjack tuna (katsuwonus pelamis) (SJT) is the largest tuna fishery in all the major oceans around the world, and the largest marine fishery in Sri Lanka. Knowledge of genetic population structure and effective population size of SJT in the Indian Ocean and other major oceans, however, is still lacking for better management practices and conservation strategies. We developed microsatellite genetic markers using SJT around Sri Lanka in the Indian Ocean, and characterise one tri- and seven tetra-nucleotide microsatellite loci isolated from enriched genomic libraries from SJT, to provide tools for addressing both conservation and fisheries management questions. An analysis of these eight microsatellite markers in two populations of SJT from eastern Sri Lanka (n = 44) and the Maldives Islands (n = 53) showed that all eight microsatellites were polymorphic with an average number of alleles per locus of 11.80 (range 5-27). Expected heterozygosities at marker loci ranged from 0.450 to 0.961. These markers are being used currently to characterise population structure and extent of natural gene flow in SJT populations from the eastern and western Indian Ocean. No significant linkage disequilibrium was detected among any loci pairs.
Resumo:
Long undersea debris runout can be facilitated by a boundary layer formed by weak marine sediments under a moving slide mass. Undrained loading of such offshore sediment results in a profound drop of basal shear resistance, compared to subaerial shear resistance, enabling long undersea runout. Thus large long-runout submarine landslides are not truly enigmatic (Voight and Elsworth 1992, 1997), but are understandable in terms of conventional geotechnical principles. A corollary is that remoulded undrained strength, and not friction angle, should be used for basal resistance in numerical simulations. This hypothesis is testable via drilling and examining the structure at the soles of undersea debris avalanches for indications of incorporation of sheared marine sediments, by tests of soil properties, and by simulations. Such considerations of emplacement process are an aim of ongoing research in the Lesser Antilles (Caribbean Sea), where multiple offshore debris avalanche and dome-collapse debris deposits have been identified since 1999 on swath bathymetric surveys collected in five oceanographic cruises. This paper reviews the prehistoric and historic collapses that have occurred offshore of Antilles arc islands and summarizes ongoing research on emplacement processes.
Resumo:
This contribution provides an analysis of the 1995–2009 eruptive period of Soufrière Hills volcano (Montserrat) from a unique offshore perspective. The methodology is based on five repeated swath bathymetric surveys. The difference between the 2009 and 1999 bathymetry suggests that at least 395 Mm3 of material has entered the sea. This proximal deposit reaches 95 m thick and extends ∼7km from shore. However, the difference map does not include either the finer distal part of the submarine deposit or the submarine part of the delta close to the shoreline. We took both contributions into account by using additional information such as that from marine sediment cores. By March 2009, at least 65% of the material erupted throughout the eruption has been deposited into the sea. This work provides an excellent basis for assessing the future activity of the Soufrière Hills volcano (including potential collapse), and other volcanoes on small islands.
Resumo:
Visual sea-floor mapping is a rapidly growing application for Autonomous Underwater Vehicles (AUVs). AUVs are well-suited to the task as they remove humans from a potentially dangerous environment, can reach depths human divers cannot, and are capable of long-term operation in adverse conditions. The output of sea-floor maps generated by AUVs has a number of applications in scientific monitoring: from classifying coral in high biological value sites to surveying sea sponges to evaluate marine environment health.
Resumo:
Breast cancer in its advanced stage has a high predilection to the skeleton. Currently, treatment options of breast cancer-related bone metastasis are restricted to only palliative therapeutic modalities. This is due to the fact that mechanisms regarding the breast cancer celI-bone colonisation as well as the interactions of breast cancer cells with the bone microenvironment are not fully understood, yet. This might be explained through a lack of appropriate in vitro and in vivo models that are currently addressing the above mentioned issue. Hence the hypothesis that the translation of a bone tissue engineering platform could lead to improved and more physiological in vitro and in vivo model systems in order to investigate breast cancer related bone colonisation was embraced in this PhD thesis. Therefore the first objective was to develop an in vitro model system that mimics human mineralised bone matrix to the highest possible extent to examine the specific biological question, how the human bone matrix influences breast cancer cell behaviour. Thus, primary human osteoblasts were isolated from human bone and cultured under osteogenic conditions. Upon ammonium hydroxide treatment, a cell-free intact mineralised human bone matrix was left behind. Analyses revealed a similar protein and mineral composition of the decellularised osteoblast matrix to human bone. Seeding of a panel of breast cancer cells onto the bone mimicking matrix as well as reference substrates like standard tissue culture plastic and collagen coated tissue culture plastic revealed substrate specific differences of cellular behaviour. Analyses of attachment, alignment, migration, proliferation, invasion, as well as downstream signalling pathways showed that these cellular properties were influenced through the osteoblast matrix. The second objective of this PhD project was the development of a human ectopic bone model in NOD/SCID mice using medical grade polycaprolactone tricalcium phosphate (mPCL-TCP) scaffold. Human osteoblasts and mesenchymal stem cells were seeded onto an mPCL-TCP scaffold, fabricated using a fused deposition modelling technique. After subcutaneous implantation in conjunction with the bone morphogenetic protein 7, limited bone formation was observed due to the mechanical properties of the applied scaffold and restricted integration into the soft tissue of flank of NOD/SCID mice. Thus, a different scaffold fabrication technique was chosen using the same polymer. Electrospun tubular scaffolds were seeded with human osteoblasts, as they showed previously the highest amount of bone formation and implanted into the flanks of NOD/SCID mice. Ectopic bone formation with sufficient vascularisation could be observed. After implantation of breast cancer cells using a polyethylene glycol hydrogel in close proximity to the newly formed bone, macroscopic communication between the newly formed bone and the tumour could be observed. Taken together, this PhD project showed that bone tissue engineering platforms could be used to develop an in vitro and in vivo model system to study cancer cell colonisation in the bone microenvironment.
Resumo:
This study was part of an integrated project developed in response to concerns regarding current and future land practices affecting water quality within coastal catchments and adjacent marine environments. Two forested coastal catchments on the Fraser Coast, Australia, were chosen as examples of low-modification areas with similar geomorphological and land-use characteristics to many other coastal zones in southeast Queensland. For this component of the overall project, organic , physico-chemical (Eh, pH and DO), ionic (Fe2+, Fe3+), and isotopic (ä13CDIC, ä15NDIN ä34SSO4) data were used to characterise waters and identify sources and processes contributing to concentrations and form of dissolved Fe, C, N and S within the ground and surface waters of these coastal catchments. Three sites with elevated Fe concentrations are discussed in detail. These included a shallow pool with intermittent interaction with the surface water drainage system, a monitoring well within a semi-confined alluvial aquifer, and a monitoring well within the fresh/saline water mixing zone adjacent to an estuary. Conceptual models of processes occurring in these environments are presented. The primary factors influencing Fe transport were; microbial reduction of Fe3+ oxyhydroxides in groundwaters and in the hyporheic zone of surface drainage systems, organic input available for microbial reduction and Fe3+ complexation, bacterial activity for reduction and oxidation, iron curtain effects where saline/fresh water mixing occurs, and variation in redox conditions with depth in ground and surface water columns. Data indicated that groundwater seepage appears a more likely source of Fe to coastal waters (during periods of low rainfall) via tidal flux. The drainage system is ephemeral and contributes little discharge to marine waters. However, data collected during a high rainfall event indicated considerable Fe loads can be transported to the estuary mouth from the catchment.
Resumo:
This paper arises from our concern for the level of teaching of engineering drawing at tertiary institutions in Australia. Little attention is paid to teaching hand drawing and tolerancing. Teaching of engineering drawing is usually limited to computer-aided design (CAD) using AutoCAD or one of the solid-modelling packages. As a result, many engineering graduates have diffi culties in understanding how views are produced in different projection angles, are unable to produce engineering drawings of professional quality, or read engineering drawings, and unable to select fits and limits or surface roughness. In the Faculty of Built Environment and Engineering at the Queensland University of Technology new approaches to teaching engineering drawing have been introduced. In this paper the results of these innovative approaches are examined through surveys and other research methods.
Resumo:
A review of the issues for supporting learning of power engineering in Australia is presented in this paper. The learning needs of students and the support available in blended learning and through distance educations are explored in this review. Specific software tools to assist the learning environment are appraised and the relevance for the next generation of power engineers assessed.
Resumo:
The increasing ecological awareness and stringent requirements for environmental protection have led to the development of water lubricated bearings in many applications where oil was used as the lubricant. The chapter details the theoretical analysis to determine both the static and dynamic characteristics,including the stability (using both the linearised perturbation method and the nonlinear transient analysis) of multiple axial groove water lubricated bearings. Experimental measurements and computational fluid dynamics (CFD) simulations by the Tribology research group at Queensland University of Technology,Australia and Manipal Institute of Technology, India, have highlighted a significant gap in the understanding of the flow phenomena and pressure conditions within the lubricating fluid. An attempt has been made to present a CFD approach to model fluid flow in the bearing with three equi-spaced axial grooves and supplied with water from one end of the bearing. Details of the experimental method used to measure the film pressure in the bearing are outlined. The lubricant is subjected to a velocity induced flow (as the shaft rotates) and a pressure induced flow (as the water is forced from one end of the bearing to the other). Results are presented for the circumferential and axial pressure distribution in the bearing clearance for different loads, speeds and supply pressures. The axial pressure profile along the axial groove located in the loaded part of the bearing is measured. The theoretical analysis shows that smaller the groove angle better will be the load-carrying capacity and stability of these bearings. Results are compared with experimentally measured pressure distributions.
Resumo:
Each year, organizations in Australian mining industry (asset intensive industry) spend substantial amount of capital (A$86 billion in 2009-10) (Statistics, 2011) in acquiring engineering assets. Engineering assets are put to use in operations to generate value. Different functions (departments) of an organization have different expectations and requirements from each of the engineering asset e.g. return on investment, reliability, efficiency, maintainability, low cost of running the asset, low or nil environmental impact and easy of disposal, potential salvage value etc. Assets are acquired from suppliers or built by service providers and or internally. The process of acquiring assets is supported by procurement function. One of the most costly mistakes that organizations can make is acquiring the inappropriate or non-conforming assets that do not fit the purpose. The root cause of acquiring non confirming assets belongs to incorrect acquisition decision and the process of making decisions. It is very important that an asset acquisition decision is based on inputs and multi-criteria of each function within the organization which has direct or indirect impact on the acquisition, utilization, maintenance and disposal of the asset. Literature review shows that currently there is no comprehensive process framework and tool available to evaluate the inclusiveness and breadth of asset acquisition decisions that are taken in the Mining Organizations. This thesis discusses various such criteria and inputs that need to be considered and evaluated from various functions within the organization while making the asset acquisition decision. Criteria from functions such as finance, production, maintenance, logistics, procurement, asset management, environment health and safety, material management, training and development etc. need to be considered to make an effective and coherent asset acquisition decision. The thesis also discusses a tool that is developed to be used in the multi-criteria and cross functional acquisition decision making. The development of multi-criteria and cross functional inputs based decision framework and tool which utilizes that framework to formulate cross functional and integrated asset acquisition decisions are the contribution of this research.
Resumo:
There remains a substantial shortfall in treatment of severe skeletal injuries. The current gold standard of autologous bone grafting from the same patient, has many undesirable side effects associated such as donor site morbidity. Tissue engineering seeks to offer a solution to this problem. The primary requirements for tissue engineered scaffolds have already been well established, and many materials, such as polyesters, present themselves as potential candidates for bone defects; they have comparable structural features, but they often lack the required osteoconductivity to promote adequate bone regeneration. By combining these materials with biological growth factors; which promote the infiltration of cells into the scaffold as well as the differentiation into the specific cell and tissue type, it is possible to increase the formation of new bone. However cost and potential complications associated with growth factors means controlled release is an important consideration in the design of new bone tissue engineering strategies. This review will cover recent research in the area of encapsulation and release of growth factors within a variety of different polymeric scaffolds.
Resumo:
Engineering asset management (EAM) is a rapidly growing and developing field. However, efforts to select and develop engineers in this area are complicated by our lack of understanding of the full range of competencies required to perform. This exploratory study sought to clarify and categorise the professional competencies required of individuals at different hierarchical levels within EAM. Data from 14 interviews and 61 on-line survey participants has informed the development of an initial Professional Competency Framework. The nine competency categories indicate that Engineers working in this field need to be able to collaborate and influence others, complete objectives within organizational guidelines and be able to manage themselves effectively. Limitations and potential uses in practice and research for this framework are discussed.
Resumo:
While highly cohesive groups are potentially advantageous they are also often correlated with the emergence of knowledge and information silos based around those same functional or occupational clusters. Consequently, an essential challenge for engineering organisations wishing to overcome informational silos is to implement mechanisms that facilitate, encourage and sustain interactions between otherwise disconnected groups. This paper acts as a primer for those seeking to gain an understanding of the design, functionality and utility of a suite of software tools generically termed social media technologies in the context of optimising the management of tacit engineering knowledge. Underpinned by knowledge management theory and using detailed case examples, this paper explores how social media technologies achieve such goals, allowing for the transfer of knowledge by tapping into the tacit and explicit knowledge of disparate groups in complex engineering environments.
Resumo:
The drive to develop bone grafts for the filling of major gaps in the skeletal structure has led to a major research thrust towards developing biomaterials for bone engineering. Unfortunately, from a clinical perspective, the promise of bone tissue engineering which was so vibrant a decade ago has so far failed to deliver the anticipated results of becoming a routine therapeutic application in reconstructive surgery. Here we describe the analysis of long-term bone regeneration studies in preclinical animal models, exploiting methods of micro- and nano analysis of biodegradable composite scaffolds.