707 resultados para Active appearance models
Resumo:
The importance of actively managing and analysing business processes is acknowledged more than ever in organisations nowadays. Business processes form an essential part of an organisation and their application areas are manifold. Most organisations keep records of various activities that have been carried out for auditing purposes, but they are rarely used for analysis purposes. This paper describes the design and implementation of a process analysis tool that replays, analyses and visualises a variety of performance metrics using a process definition and its corresponding execution logs. The replayer uses a YAWL process model example to demonstrate its capacity to support advanced language constructs.
Resumo:
The number of software vendors offering ‘Software-as-a-Service’ has been increasing in recent years. In the Software-as-a-Service model software is operated by the software vendor and delivered to the customer as a service. Existing business models and industry structures are challenged by the changes to the deployment and pricing model compared to traditional software. However, the full implications on the way companies create, deliver and capture value are not yet sufficiently analyzed. Current research is scattered on specific aspects, only a few studies provide a more holistic view of the impact from a business model perspective. For vendors it is, however, crucial to be aware of the potentially far reaching consequences of Software-as-a-Service. Therefore, a literature review and three exploratory case studies of leading software vendors are used to evaluate possible implications of Software-as-a-Service on business models. The results show an impact on all business model building blocks and highlight in particular the often less articulated impact on key activities, customer relationship and key partnerships for leading software vendors and show related challenges, for example, with regard to the integration of development and operations processes. The observed implications demonstrate the disruptive character of the concept and identify future research requirements.
Resumo:
This paper presents a series of ongoing experiments to facilitate serendipity in the design studio through a diversity of delivery modes. These experiments are conducted in a second year architectural design studio, and include physical, dramatic and musical performance. The act of designing is always exploratory, always seeking an unknown resolution, and the ability to see and capture the value in the unexpected is a critical aspect of such creative design practice. Engaging with the unexpected is however a difficult ability to develop in students. Just how can a student be schooled in such abilities when the challenge and the context are unforeseeable? How can students be offered meaningful feedback about an issue that cannot be predicted, when feedback comes in the form of extrinsic assessment from a tutor? This project establishes a number of student activities that seek to provide intrinsic feedback from the activity itself. Further to this, the project seeks to heighten student engagement with the project through physical expression and performance: utilising more of the students’ senses than just vision and hearing. Diana Laurillard’s theories of conversational frameworks (2002) are used to interrogate the act of dramatic performance as an act of learning, with particular reference to the serendipitous activities of design. Such interrogation highlights the feedback mechanisms that facilitate intrinsic feedback and fast, if not instantaneous, cycles of learning. The physical act of performance itself provides a learning experience that is not replicable in other modes of delivery. Student feedback data and independent assessment of project outcomes are used to assess the success of this studio model.
Resumo:
This paper presents background of our research and result of our pilot study to find methods for convincing building users to become active building participants. We speculate this is possible by allowing and motivating users to customise and manage their own built environments. The ultimate aim of this research is to develop open, flexible and adaptive systems that bring awareness to building users to the extent they recognise spaces are for them to change rather than accept spaces are fixed and they are the ones to adapt. We argue this is possible if the architectural hardware is designed to adapt to begin with and more importantly if there are appropriate user interfaces that are designed to work with the hardware. A series of simple prototypes were made to study possibilities through making, installing and experiencing them. Ideas discussed during making and experiencing of prototypes were evaluated to generate further ideas. This method was very useful to speculate unexplored and unknown issues with respect to developing user interfaces for active buildings.
Resumo:
The use of adaptive wing/aerofoil designs is being considered, as they are promising techniques in aeronautic/ aerospace since they can reduce aircraft emissions and improve aerodynamic performance of manned or unmanned aircraft. This paper investigates the robust design and optimization for one type of adaptive techniques: active flow control bump at transonic flow conditions on a natural laminar flow aerofoil. The concept of using shock control bump is to control supersonic flow on the suction/pressure side of natural laminar flow aerofoil that leads to delaying shock occurrence (weakening its strength) or boundary layer separation. Such an active flow control technique reduces total drag at transonic speeds due to reduction of wave drag. The location of boundary-layer transition can influence the position and structure of the supersonic shock on the suction/pressure side of aerofoil. The boundarylayer transition position is considered as an uncertainty design parameter in aerodynamic design due to the many factors, such as surface contamination or surface erosion. This paper studies the shock-control-bump shape design optimization using robust evolutionary algorithms with uncertainty in boundary-layer transition locations. The optimization method is based on a canonical evolution strategy and incorporates the concepts of hierarchical topology, parallel computing, and asynchronous evaluation. The use of adaptive wing/aerofoil designs is being considered, as they are promising techniques in aeronautic/ aerospace since they can reduce aircraft emissions and improve aerodynamic performance of manned or unmanned aircraft. This paper investigates the robust design and optimization for one type of adaptive techniques: active flow control bump at transonic flow conditions on a natural laminar flow aerofoil. The concept of using shock control bump is to control supersonic flow on the suction/pressure side of natural laminar flow aerofoil that leads to delaying shock occurrence (weakening its strength) or boundary-layer separation. Such an active flow control technique reduces total drag at transonic speeds due to reduction of wave drag. The location of boundary-layer transition can influence the position and structure of the supersonic shock on the suction/pressure side of aerofoil. The boundarylayer transition position is considered as an uncertainty design parameter in aerodynamic design due to the many factors, such as surface contamination or surface erosion. This paper studies the shock-control-bump shape design optimization using robust evolutionary algorithms with uncertainty in boundary-layer transition locations. The optimization method is based on a canonical evolution strategy and incorporates the concepts of hierarchical topology, parallel computing, and asynchronous evaluation. Two test cases are conducted: the first test assumes the boundary-layer transition position is at 45% of chord from the leading edge, and the second test considers robust design optimization for the shock control bump at the variability of boundary-layer transition positions. The numerical result shows that the optimization method coupled to uncertainty design techniques produces Pareto optimal shock-control-bump shapes, which have low sensitivity and high aerodynamic performance while having significant total drag reduction.
Resumo:
Hybrid system representations have been applied to many challenging modeling situations. In these hybrid system representations, a mixture of continuous and discrete states is used to capture the dominating behavioural features of a nonlinear, possible uncertain, model under approximation. Unfortunately, the problem of how to best design a suitable hybrid system model has not yet been fully addressed. This paper proposes a new joint state measurement relative entropy rate based approach for this design purpose. Design examples and simulation studies are presented which highlight the benefits of our proposed design approaches.
Resumo:
We consider the problem of how to construct robust designs for Poisson regression models. An analytical expression is derived for robust designs for first-order Poisson regression models where uncertainty exists in the prior parameter estimates. Given certain constraints in the methodology, it may be necessary to extend the robust designs for implementation in practical experiments. With these extensions, our methodology constructs designs which perform similarly, in terms of estimation, to current techniques, and offers the solution in a more timely manner. We further apply this analytic result to cases where uncertainty exists in the linear predictor. The application of this methodology to practical design problems such as screening experiments is explored. Given the minimal prior knowledge that is usually available when conducting such experiments, it is recommended to derive designs robust across a variety of systems. However, incorporating such uncertainty into the design process can be a computationally intense exercise. Hence, our analytic approach is explored as an alternative.
Resumo:
Bistability arises within a wide range of biological systems from the λ phage switch in bacteria to cellular signal transduction pathways in mammalian cells. Changes in regulatory mechanisms may result in genetic switching in a bistable system. Recently, more and more experimental evidence in the form of bimodal population distributions indicates that noise plays a very important role in the switching of bistable systems. Although deterministic models have been used for studying the existence of bistability properties under various system conditions, these models cannot realize cell-to-cell fluctuations in genetic switching. However, there is a lag in the development of stochastic models for studying the impact of noise in bistable systems because of the lack of detailed knowledge of biochemical reactions, kinetic rates, and molecular numbers. In this work, we develop a previously undescribed general technique for developing quantitative stochastic models for large-scale genetic regulatory networks by introducing Poisson random variables into deterministic models described by ordinary differential equations. Two stochastic models have been proposed for the genetic toggle switch interfaced with either the SOS signaling pathway or a quorum-sensing signaling pathway, and we have successfully realized experimental results showing bimodal population distributions. Because the introduced stochastic models are based on widely used ordinary differential equation models, the success of this work suggests that this approach is a very promising one for studying noise in large-scale genetic regulatory networks.
Resumo:
This prospective study examined the association between physical activity and the incidence of self-reported stiff or painful joints (SPJ) among mid-age women and older women over a 3-year period. Data were collected from cohorts of mid-age (48–55 years at Time 1; n = 4,780) and older women (72–79 years at Time 1; n = 3,970) who completed mailed surveys 3 years apart for the Australian Longitudinal Study on Women's Health. Physical activity was measured with the Active Australia questions and categorized based on metabolic equivalent value minutes per week: none (<40 MET.min/week); very low (40 to <300 MET.min/week); low (300 to <600 MET.min/week); moderate (600 to <1,200 MET.min/week); and high (1,200+ MET.min/week). Cohort-specific logistic regression models were used to examine the association between physical activity at Time 1 and SPJ 'sometimes or often' and separately 'often' at Time 2. Respondents reporting SPJ 'sometimes or often' at Time 1 were excluded from analysis. In univariate models, the odds of reporting SPJ 'sometimes or often' were lower for mid-age respondents reporting low (odds ratio (OR) = 0.77, 95% confidence interval (CI) = 0.63–0.94), moderate (OR = 0.82, 95% CI = 0.68–0.99), and high (OR = 0.75, 95% CI = 0.62–0.90) physical activity levels and for older respondents who were moderately (OR = 0.80, 95% CI = 0.65–0.98) or highly active (OR = 0.83, 95% CI = 0.69–0.99) than for those who were sedentary. After adjustment for confounders, these associations were no longer statistically significant. The odds of reporting SPJ 'often' were lower for mid-age respondents who were moderately active (OR = 0.71, 95% CI = 0.52–0.97) than for sedentary respondents in univariate but not adjusted models. Older women in the low (OR = 0.72, 95% CI = 0.55–0.96), moderate (OR = 0.54, 95% CI = 0.39–0.76), and high (OR = 0.61, 95% CI = 0.46–0.82) physical activity categories had lower odds of reporting SPJ 'often' at Time 2 than their sedentary counterparts, even after adjustment for confounders. These results are the first to show a dose–response relationship between physical activity and arthritis symptoms in older women. They suggest that advice for older women not currently experiencing SPJ should routinely include counseling on the importance of physical activity for preventing the onset of these symptoms.
Resumo:
The importance of mitogen-activated protein kinase signaling in melanoma is underscored by the prevalence of activating mutations in N-Ras and B-Raf, yet clinical development of inhibitors of this pathway has been largely ineffective, suggesting that alternative oncogenes may also promote melanoma. Notch is an interesting candidate that has only been correlated with melanoma development and progression; a thorough assessment of tumor-initiating effects of activated Notch on human melanocytes would clarify the mounting correlative evidence and perhaps identify a novel target for an otherwise untreatable disease. Analysis of a substantial panel of cell lines and patient lesions showed that Notch activity is significantly higher in melanomas than their nontransformed counterparts. The use of a constitutively active, truncated Notch transgene construct (N(IC)) was exploited to determine if Notch activation is a "driving" event in melanocytic transformation or instead a "passenger" event associated with melanoma progression. N(IC)-infected melanocytes displayed increased proliferative capacity and biological features more reminiscent of melanoma, such as dysregulated cell adhesion and migration. Gene expression analyses supported these observations and aided in the identification of MCAM, an adhesion molecule associated with acquisition of the malignant phenotype, as a direct target of Notch transactivation. N(IC)-positive melanocytes grew at clonal density, proliferated in limiting media conditions, and also exhibited anchorage-independent growth, suggesting that Notch alone is a transforming oncogene in human melanocytes, a phenomenon not previously described for any melanoma oncogene. This new information yields valuable insight into the basic epidemiology of melanoma and launches a realm of possibilities for drug intervention in this deadly disease.