109 resultados para wrist, abnormalities
Resumo:
Professionals working in disability services often encounter clients who have chromosome disorders such as Williams, Angelman or Down syndromes. As chromosome testing becomes increasingly sophisticated, however, more people are being diagnosed with very rare chromosome disorders that are identified not by a syndrome name, but rather by a description of the number, size and shape of their chromosomes (called the karyotype) or by a report of chromosome losses and gains detected through an advanced process known as microarray-based comparative genomic hybridisation (array CGH). For practitioners who work with individuals with rare chromosome disorders and their families, a basic level of knowledge about the evolving field of genetics, as well as specific knowledge about chromosome abnormalities, is essential since they must be able to demonstrate their knowledge and skills to clients (Simic & Turk, 2004). In addition, knowledge about the developmental consequences of various rare chromosome disorders is important for guiding prognoses, expectations, decisions and interventions. The current article provides information that aims to help practitioners work more effectively with this population. It begins by presenting essential information about chromosomes and their numerical and structural abnormalities and then considers the developmental consequences of rare chromosome disorders through a critical review of relevant literature.
Resumo:
Swelling or lymphedema of the limb, trunk, or breast is considered the most problematic and dreaded concern after treatment for breast cancer and has significant physical, psychological, and social ramifications. Conservative incidence estimates suggest that 20%-30% of breast cancer survivors will experience lymphedema, with the majority of cases (up to 80%) occurring within the first year after surgery. The etiology of secondary lymphedema seems to be multifactorial, with acquired abnormalities as well as preexisting conditions being contributory factors.
Resumo:
Key points • The clinical aims of MR spectroscopy (MRS) in seizure disorders are to help identify, localize and characterize epileptogenic foci. • Lateralizing MRS abnormalities in temporal lobe epilepsy (TLE) may be used clinically in combination with structural and T2 MRI measurements together with other techniques such as EEG, PET and SPECT. • Characteristic metabolite abnormalities are decreased N-acetylaspartate (NAA) with increased choline (Cho) and myoinositol (mI) (short-echo time). • Contralateral metabolite abnormalities are frequently seen in TLE, but are of uncertain significance. • In extra-temporal epilepsy, metabolite abnormalities may be seen where MR imaging (MRI) is normal; but may not be sufficiently localized to be useful clinically. • MRS may help to characterize epileptogenic lesions visible on MRI (aggressive vs. indolent neoplastic, dysplasia). • Spectral editing techniques are required to evaluate specific epilepsy-relevant metabolites (e.g. -aminobutyric acid (GABA)), which may be useful in drug development and evaluation. • MRS with phosphorus (31P) and other nuclei probe metabolism of epilepsy, but are less useful clinically. • There is potential for assessing the of drug mode of action and efficacy through 13C carbon metabolite measurements, while changes in sodium homeostasis resulting from seizure activity may be detected with 23Na MRS.
Resumo:
Bioelectrical impedance analysis, (BIA), is a method of body composition analysis first investigated in 1962 which has recently received much attention by a number of research groups. The reasons for this recent interest are its advantages, (viz: inexpensive, non-invasive and portable) and also the increasing interest in the diagnostic value of body composition analysis. The concept utilised by BIA to predict body water volumes is the proportional relationship for a simple cylindrical conductor, (volume oc length2/resistance), which allows the volume to be predicted from the measured resistance and length. Most of the research to date has measured the body's resistance to the passage of a 50· kHz AC current to predict total body water, (TBW). Several research groups have investigated the application of AC currents at lower frequencies, (eg 5 kHz), to predict extracellular water, (ECW). However all research to date using BIA to predict body water volumes has used the impedance measured at a discrete frequency or frequencies. This thesis investigates the variation of impedance and phase of biological systems over a range of frequencies and describes the development of a swept frequency bioimpedance meter which measures impedance and phase at 496 frequencies ranging from 4 kHz to 1 MHz. The impedance of any biological system varies with the frequency of the applied current. The graph of reactance vs resistance yields a circular arc with the resistance decreasing with increasing frequency and reactance increasing from zero to a maximum then decreasing to zero. Computer programs were written to analyse the measured impedance spectrum and determine the impedance, Zc, at the characteristic frequency, (the frequency at which the reactance is a maximum). The fitted locus of the measured data was extrapolated to determine the resistance, Ro, at zero frequency; a value that cannot be measured directly using surface electrodes. The explanation of the theoretical basis for selecting these impedance values (Zc and Ro), to predict TBW and ECW is presented. Studies were conducted on a group of normal healthy animals, (n=42), in which TBW and ECW were determined by the gold standard of isotope dilution. The prediction quotients L2/Zc and L2/Ro, (L=length), yielded standard errors of 4.2% and 3.2% respectively, and were found to be significantly better than previously reported, empirically determined prediction quotients derived from measurements at a single frequency. The prediction equations established in this group of normal healthy animals were applied to a group of animals with abnormally low fluid levels, (n=20), and also to a group with an abnormal balance of extra-cellular to intracellular fluids, (n=20). In both cases the equations using L2/Zc and L2/Ro accurately and precisely predicted TBW and ECW. This demonstrated that the technique developed using multiple frequency bioelectrical impedance analysis, (MFBIA), can accurately predict both TBW and ECW in both normal and abnormal animals, (with standard errors of the estimate of 6% and 3% for TBW and ECW respectively). Isotope dilution techniques were used to determine TBW and ECW in a group of 60 healthy human subjects, (male. and female, aged between 18 and 45). Whole body impedance measurements were recorded on each subject using the MFBIA technique and the correlations between body water volumes, (TBW and ECW), and heighe/impedance, (for all measured frequencies), were compared. The prediction quotients H2/Zc and H2/Ro, (H=height), again yielded the highest correlation with TBW and ECW respectively with corresponding standard errors of 5.2% and 10%. The values of the correlation coefficients obtained in this study were very similar to those recently reported by others. It was also observed that in healthy human subjects the impedance measured at virtually any frequency yielded correlations not significantly different from those obtained from the MFBIA quotients. This phenomenon has been reported by other research groups and emphasises the need to validate the technique by investigating its application in one or more groups with abnormalities in fluid levels. The clinical application of MFBIA was trialled and its capability of detecting lymphoedema, (an excess of extracellular fluid), was investigated. The MFBIA technique was demonstrated to be significantly more sensitive, (P<.05), in detecting lymphoedema than the current technique of circumferential measurements. MFBIA was also shown to provide valuable information describing the changes in the quantity of muscle mass of the patient during the course of the treatment. The determination of body composition, (viz TBW and ECW), by MFBIA has been shown to be a significant improvement on previous bioelectrical impedance techniques. The merit of the MFBIA technique is evidenced in its accurate, precise and valid application in animal groups with a wide variation in body fluid volumes and balances. The multiple frequency bioelectrical impedance analysis technique developed in this study provides accurate and precise estimates of body composition, (viz TBW and ECW), regardless of the individual's state of health.
Resumo:
Patients with idiopathic small fibre neuropathy (ISFN) have been shown to have significant intraepidermal nerve fibre loss and an increased prevalence of impaired glucose tolerance (IGT). It has been suggested that the dysglycemia of IGT and additional metabolic risk factors may contribute to small nerve fibre damage in these patients. Twenty-five patients with ISFN and 12 aged-matched control subjects underwent a detailed evaluation of neuropathic symptoms, neurological deficits (Neuropathy deficit score (NDS); Nerve Conduction Studies (NCS); Quantitative Sensory Testing (QST) and Corneal Confocal Microscopy (CCM)) to quantify small nerve fibre pathology. Eight (32%) patients had IGT. Whilst all patients with ISFN had significant neuropathic symptoms, NDS, NCS and QST except for warm thresholds were normal. Corneal sensitivity was reduced and CCM demonstrated a significant reduction in corneal nerve fibre density (NFD) (Pb0.0001), nerve branch density (NBD) (Pb0.0001), nerve fibre length (NFL) (Pb0.0001) and an increase in nerve fibre tortuosity (NFT) (Pb0.0001). However these parameters did not differ between ISFN patients with and without IGT, nor did they correlate with BMI, lipids and blood pressure. Corneal confocal microscopy provides a sensitive non-invasive means to detect small nerve fibre damage in patients with ISFN and metabolic abnormalities do not relate to nerve damage.
Resumo:
Study Design: Case Study Series.---------- Introduction: Restriction of forearm rotation may be required for effective management and rehabilitation of the upper limb after trauma.---------- Purpose of the Study: To compare the effectiveness of four splints in restricting forearm rotation.---------- Methods: Muenster, Sugartong, antipronation distal radioulnar joint (DRUJ), and standard wrist splints were fabricated for five healthy participants. Active range of motion (AROM) in forearm pronation and supination was measured with a goniometer for each splint, at the initial point of sensory feedback and during exertion of maximal force.---------- Results: Repeated-measures analysis of variance indicated significant differences between splints for all four AROM measures. Post hoc paired t-tests showed that the Sugartong splint was significantly more restrictive in pronation than the Muenster splint. The antipronation DRUJ splint provided significantly greater restriction in pronation than the standard wrist splint. No splints immobilized the forearm completely.---------- Conclusions: The Sugartong splint is recommended for maximal restriction in pronation, but individual patient characteristics require consideration in splint choice.
Resumo:
BACKGROUND: The relationship between cigarette smoking and cardiovascular disease is well established, yet the underlying mechanisms remain unclear. Although smokers have a more atherogenic lipid profile, this may be mediated by other lifestyle-related factors. Analysis of lipoprotein subclasses by the use of nuclear magnetic resonance spectroscopy (NMR) may improve characterisation of lipoprotein abnormalities. OBJECTIVE: We used NMR spectroscopy to investigate the relationships between smoking status, lifestyle-related risk factors, and lipoproteins in a contemporary cohort. METHODS: A total of 612 participants (360 women) aged 40–69 years at baseline (199021994) enrolled in the Melbourne Collaborative Cohort Study had plasma lipoproteins measured with NMR. Data were analysed separately by sex. RESULTS: After adjusting for lifestyle-related risk factors, including alcohol and dietary intake, physical activity, and weight, mean total low-density lipoprotein (LDL) particle concentration was greater for female smokers than nonsmokers. Both medium- and small-LDL particle concentrations contributed to this difference. Total high-density lipoprotein (HDL) and large-HDL particle concentrations were lower for female smokers than nonsmokers. The proportion with low HDL particle number was greater for female smokers than nonsmokers. For men, there were few smoking-related differences in lipoprotein measures. CONCLUSION: Female smokers have a more atherogenic lipoprotein profile than nonsmokers. This difference is independent of other lifestyle-related risk factors. Lipoprotein profiles did not differ greatly between male smokers and nonsmokers.
Resumo:
The present paper proposes a technical analysis method for extracting information about movement patterning in studies of motor control, based on a cluster analysis of movement kinematics. In a tutorial fashion, data from three different experiments are presented to exemplify and validate the technical method. When applied to three different basketball-shooting techniques, the method clearly distinguished between the different patterns. When applied to a cyclical wrist supination-pronation task, the cluster analysis provided the same results as an analysis using the conventional discrete relative phase measure. Finally, when analyzing throwing performance constrained by distance to target, the method grouped movement patterns together according to throwing distance. In conclusion, the proposed technical method provides a valuable tool to improve understanding of coordination and control in different movement models, including multiarticular actions.
Resumo:
The tear film plays an important role preserving the health of the ocular surface and maintaining the optimal refractive power of the cornea. Moreover dry eye syndrome is one of the most commonly reported eye health problems. This syndrome is caused by abnormalities in the properties of the tear film. Current clinical tools to assess the tear film properties have shown certain limitations. The traditional invasive methods for the assessment of tear film quality, which are used by most clinicians, have been criticized for the lack of reliability and/or repeatability. A range of non-invasive methods of tear assessment have been investigated, but also present limitations. Hence no “gold standard” test is currently available to assess the tear film integrity. Therefore, improving techniques for the assessment of the tear film quality is of clinical significance and the main motivation for the work described in this thesis. In this study the tear film surface quality (TFSQ) changes were investigated by means of high-speed videokeratoscopy (HSV). In this technique, a set of concentric rings formed in an illuminated cone or a bowl is projected on the anterior cornea and their reflection from the ocular surface imaged on a charge-coupled device (CCD). The reflection of the light is produced in the outer most layer of the cornea, the tear film. Hence, when the tear film is smooth the reflected image presents a well structure pattern. In contrast, when the tear film surface presents irregularities, the pattern also becomes irregular due to the light scatter and deviation of the reflected light. The videokeratoscope provides an estimate of the corneal topography associated with each Placido disk image. Topographical estimates, which have been used in the past to quantify tear film changes, may not always be suitable for the evaluation of all the dynamic phases of the tear film. However the Placido disk image itself, which contains the reflected pattern, may be more appropriate to assess the tear film dynamics. A set of novel routines have been purposely developed to quantify the changes of the reflected pattern and to extract a time series estimate of the TFSQ from the video recording. The routine extracts from each frame of the video recording a maximized area of analysis. In this area a metric of the TFSQ is calculated. Initially two metrics based on the Gabor filter and Gaussian gradient-based techniques, were used to quantify the consistency of the pattern’s local orientation as a metric of TFSQ. These metrics have helped to demonstrate the applicability of HSV to assess the tear film, and the influence of contact lens wear on TFSQ. The results suggest that the dynamic-area analysis method of HSV was able to distinguish and quantify the subtle, but systematic degradation of tear film surface quality in the inter-blink interval in contact lens wear. It was also able to clearly show a difference between bare eye and contact lens wearing conditions. Thus, the HSV method appears to be a useful technique for quantitatively investigating the effects of contact lens wear on the TFSQ. Subsequently a larger clinical study was conducted to perform a comparison between HSV and two other non-invasive techniques, lateral shearing interferometry (LSI) and dynamic wavefront sensing (DWS). Of these non-invasive techniques, the HSV appeared to be the most precise method for measuring TFSQ, by virtue of its lower coefficient of variation. While the LSI appears to be the most sensitive method for analyzing the tear build-up time (TBUT). The capability of each of the non-invasive methods to discriminate dry eye from normal subjects was also investigated. The receiver operating characteristic (ROC) curves were calculated to assess the ability of each method to predict dry eye syndrome. The LSI technique gave the best results under both natural blinking conditions and in suppressed blinking conditions, which was closely followed by HSV. The DWS did not perform as well as LSI or HSV. The main limitation of the HSV technique, which was identified during the former clinical study, was the lack of the sensitivity to quantify the build-up/formation phase of the tear film cycle. For that reason an extra metric based on image transformation and block processing was proposed. In this metric, the area of analysis was transformed from Cartesian to Polar coordinates, converting the concentric circles pattern into a quasi-straight lines image in which a block statistics value was extracted. This metric has shown better sensitivity under low pattern disturbance as well as has improved the performance of the ROC curves. Additionally a theoretical study, based on ray-tracing techniques and topographical models of the tear film, was proposed to fully comprehend the HSV measurement and the instrument’s potential limitations. Of special interested was the assessment of the instrument’s sensitivity under subtle topographic changes. The theoretical simulations have helped to provide some understanding on the tear film dynamics, for instance the model extracted for the build-up phase has helped to provide some insight into the dynamics during this initial phase. Finally some aspects of the mathematical modeling of TFSQ time series have been reported in this thesis. Over the years, different functions have been used to model the time series as well as to extract the key clinical parameters (i.e., timing). Unfortunately those techniques to model the tear film time series do not simultaneously consider the underlying physiological mechanism and the parameter extraction methods. A set of guidelines are proposed to meet both criteria. Special attention was given to a commonly used fit, the polynomial function, and considerations to select the appropriate model order to ensure the true derivative of the signal is accurately represented. The work described in this thesis has shown the potential of using high-speed videokeratoscopy to assess tear film surface quality. A set of novel image and signal processing techniques have been proposed to quantify different aspects of the tear film assessment, analysis and modeling. The dynamic-area HSV has shown good performance in a broad range of conditions (i.e., contact lens, normal and dry eye subjects). As a result, this technique could be a useful clinical tool to assess tear film surface quality in the future.
Resumo:
With the release of the Nintendo Wii in 2006, the use of haptic force gestures has become a very popular form of input for interactive entertainment. However, current gesture recognition techniques utilised in Nintendo Wii games fall prey to a lack of control when it comes to recognising simple gestures. This paper presents a simple gesture recognition technique called Peak Testing which gives greater control over gesture interaction. This recognition technique locates force peaks in continuous force data (provided by a gesture device such as the Wiimote) and then cancels any peaks which are not meant for input. Peak Testing is therefore technically able to identify movements in any direction. This paper applies this recognition technique to control virtual instruments and investigates how users respond to this interaction. The technique is then explored as the basis for a robust way to navigate menus with a simple flick of the wrist. We propose that this flick-form of interaction could be a very intuitive way to navigate Nintendo Wii menus instead of the current pointer techniques implemented.
Resumo:
Obesity is a major public health problem in both developed and developing countries. The body mass index (BMI) is the most common index used to define obesity. The universal application of the same BMI classification across different ethnic groups is being challenged due to the inability of the index to differentiate fat mass (FM) and fat�]free mass (FFM) and the recognized ethnic differences in body composition. A better understanding of the body composition of Asian children from different backgrounds would help to better understand the obesity�]related health risks of people in this region. Moreover, the limitations of the BMI underscore the necessity to use where possible, more accurate measures of body fat assessment in research and clinical settings in addition to BMI, particularly in relation to the monitoring of prevention and treatment efforts. The aim of the first study was to determine the ethnic difference in the relationship between BMI and percent body fat (%BF) in pre�]pubertal Asian children from China, Lebanon, Malaysia, the Philippines, and Thailand. A total of 1039 children aged 8�]10 y were recruited using a non�]random purposive sampling approach aiming to encompass a wide BMI range from the five countries. Percent body fat (%BF) was determined using the deuterium dilution technique to quantify total body water (TBW) and subsequently derive proportions of FM and FFM. The study highlighted the sex and ethnic differences between BMI and %BF in Asian children from different countries. Girls had approximately 4.0% higher %BF compared with boys at a given BMI. Filipino boys tended to have a lower %BF than their Chinese, Lebanese, Malay and Thai counterparts at the same age and BMI level (corrected mean %BF was 25.7�}0.8%, 27.4�}0.4%, 27.1�}0.6%, 27.7�}0.5%, 28.1�}0.5% for Filipino, Chinese, Lebanese, Malay and Thai boys, respectively), although they differed significantly from Thai and Malay boys. Thai girls had approximately 2.0% higher %BF values than Chinese, Lebanese, Filipino and Malay counterparts (however no significant difference was seen among the four ethnic groups) at a given BMI (corrected mean %BF was 31.1�}0.5%, 28.6�}0.4%, 29.2�}0.6%, 29.5�}0.6%, 29.5�}0.5% for Thai, Chinese, Lebanese, Malay and Filipino girls, respectively). However, the ethnic difference in BMI�]%BF relationship varied by BMI. Compared with Caucasians, Asian children had a BMI 3�]6 units lower for a given %BF. More than one third of obese Asian children in the study were not identified using the WHO classification and more than half were not identified using the International Obesity Task Force (IOTF) classification. However, use of the Chinese classification increased the sensitivity by 19.7%, 18.1%, 2.3%, 2.3%, and 11.3% for Chinese, Lebanese, Malay, Filipino and Thai girls, respectively. A further aim of the first study was to determine the ethnic difference in body fat distribution in pre�]pubertal Asian children from China, Lebanon, Malaysia, and Thailand. The skin fold thicknesses, height, weight, waist circumference (WC) and total adiposity (as determined by deuterium dilution technique) of 922 children from the four countries was assessed. Chinese boys and girls had a similar trunk�]to�]extremity skin fold thickness ratio to Thai counterparts and both groups had higher ratios than the Malays and Lebanese at a given total FM. At a given BMI, both Chinese and Thai boys and girls had a higher WC than Malays and Lebanese (corrected mean WC was 68.1�}0.2 cm, 67.8�}0.3 cm, 65.8�}0.4 cm, 64.1�}0.3 cm for Chinese, Thai, Lebanese and Malay boys, respectively; 64.2�}0.2 cm, 65.0�}0.3 cm, 62.9�}0.4 cm, 60.6�}0.3 cm for Chinese, Thai, Lebanese and Malay girls, respectively). Chinese boys and girls had lower trunk fat adjusted subscapular/suprailiac skinfold ratio compared with Lebanese and Malay counterparts. The second study aimed to develop and cross�]validate bioelectrical impedance analysis (BIA) prediction equations of TBW and FFM for Asian pre�]pubertal children from China, Lebanon, Malaysia, the Philippines, and Thailand. Data on height, weight, age, gender, resistance and reactance measured by BIA were collected from 948 Asian children (492 boys and 456 girls) aged 8�]10 y from the five countries. The deuterium dilution technique was used as the criterion method for the estimation of TBW and FFM. The BIA equations were developed from the validation group (630 children randomly selected from the total sample) using stepwise multiple regression analysis and cross�]validated in a separate group (318 children) using the Bland�]Altman approach. Age, gender and ethnicity influenced the relationship between the resistance index (RI = height2/resistance), TBW and FFM. The BIA prediction equation for the estimation of TBW was: TBW (kg) = 0.231�~Height2 (cm)/resistance (ƒ¶) + 0.066�~Height (cm) + 0.188�~Weight (kg) + 0.128�~Age (yr) + 0.500�~Sex (male=1, female=0) . 0.316�~Ethnicity (Thai ethnicity=1, others=0) �] 4.574, and for the estimation of FFM: FFM (kg) = 0.299�~Height2 (cm)/resistance (ƒ¶) + 0.086�~Height (cm) + 0.245�~Weight (kg) + 0.260�~Age (yr) + 0.901�~Sex (male=1, female=0) �] 0.415�~Ethnicity (Thai ethnicity=1, others=0) �] 6.952. The R2 was 88.0% (root mean square error, RSME = 1.3 kg), 88.3% (RSME = 1.7 kg) for TBW and FFM equation, respectively. No significant difference between measured and predicted TBW and between measured and predicted FFM for the whole cross�]validation sample was found (bias = �]0.1�}1.4 kg, pure error = 1.4�}2.0 kg for TBW and bias = �]0.2�}1.9 kg, pure error = 1.8�}2.6 kg for FFM). However, the prediction equation for estimation of TBW/FFM tended to overestimate TBW/FFM at lower levels while underestimate at higher levels of TBW/FFM. Accuracy of the general equation for TBW and FFM compared favorably with both BMI�]specific and ethnic�]specific equations. There were significant differences between predicted TBW and FFM from external BIA equations derived from Caucasian populations and measured values in Asian children. There were three specific aims of the third study. The first was to explore the relationship between obesity and metabolic syndrome and abnormalities in Chinese children. A total of 608 boys and 800 girls aged 6�]12 y were recruited from four cities in China. Three definitions of pediatric metabolic syndrome and abnormalities were used, including the International Diabetes Federation (IDF) and National Cholesterol Education Program (NCEP) definition for adults modified by Cook et al. and de Ferranti et al. The prevalence of metabolic syndrome varied with different definitions, was highest using the de Ferranti definition (5.4%, 24.6% and 42.0%, respectively for normal�]weight, overweight and obese children), followed by the Cook definition (1.5%, 8.1%, and 25.1%, respectively), and the IDF definition (0.5%, 1.8% and 8.3%, respectively). Overweight and obese children had a higher risk of developing the metabolic syndrome compared to normal�]weight children (odds ratio varied with different definitions from 3.958 to 6.866 for overweight children, and 12.640�]26.007 for obese children). Overweight and obesity also increased the risk of developing metabolic abnormalities. Central obesity and high triglycerides (TG) were the most common while hyperglycemia was the least frequent in Chinese children regardless of different definitions. The second purpose was to determine the best obesity index for the prediction of cardiovascular (CV) risk factor clustering across a 2�]y follow�]up among BMI, %BF, WC and waist�]to�]height ratio (WHtR) in Chinese children. Height, weight, WC, %BF as determined by BIA, blood pressure, TG, high�]density lipoprotein cholesterol (HDL�]C), and fasting glucose were collected at baseline and 2 years later in 292 boys and 277 girls aged 8�]10 y. The results showed the percentage of children who remained overweight/obese defined on the basis of BMI, WC, WHtR and %BF was 89.7%, 93.5%, 84.5%, and 80.4%, respectively after 2 years. Obesity indices at baseline significantly correlated with TG, HDL�]C, and blood pressure at both baseline and 2 years later with a similar strength of correlations. BMI at baseline explained the greatest variance of later blood pressure. WC at baseline explained the greatest variance of later HDL�]C and glucose, while WHtR at baseline was the main predictor of later TG. Receiver�]operating characteristic (ROC) analysis explored the ability of the four indices to identify the later presence of CV risk. The overweight/obese children defined on the basis of BMI, WC, WHtR or %BF were more likely to develop CV risk 2 years later with relative risk (RR) scores of 3.670, 3.762, 2.767, and 2.804, respectively. The final purpose of the third study was to develop age�] and gender�]specific percentiles of WC and WHtR and cut�]off points of WC and WHtR for the prediction of CV risk in Chinese children. Smoothed percentile curves of WC and WHtR were produced in 2830 boys and 2699 girls aged 6�]12 y randomly selected from southern and northern China using the LMS method. The optimal age�] and gender�]specific thresholds of WC and WHtR for the prediction of cardiovascular risk factors clustering were derived in a sub�]sample (n=1845) by ROC analysis. Age�] and gender�]specific WC and WHtR percentiles were constructed. The WC thresholds were at the 90th and 84th percentiles for Chinese boys and girls, respectively, with sensitivity and specificity ranging from 67.2% to 83.3%. The WHtR thresholds were at the 91st and 94th percentiles for Chinese boys and girls, respectively, with sensitivity and specificity ranging from 78.6% to 88.9%. The cut�]offs of both WC and WHtR were age�] and gender�]dependent. In conclusion, the current thesis quantifies the ethnic differences in the BMI�]%BF relationship and body fat distribution between Asian children from different origins and confirms the necessity to consider ethnic differences in body composition when developing BMI and other obesity index criteria for obesity in Asian children. Moreover, ethnicity is also important in BIA prediction equations. In addition, WC and WHtR percentiles and thresholds for the prediction of CV risk in Chinese children differ from other populations. Although there was no advantage of WC or WHtR over BMI or %BF in the prediction of CV risk, obese children had a higher risk of developing the metabolic syndrome and abnormalities than normal�]weight children regardless of the obesity index used.
Resumo:
The FANCA gene is one of the genes in which mutations lead to Fanconi anaemia, a rare autosomal recessive disorder characterised by congenital abnormalities, bone marrow failure, and predisposition to malignancy. FANCA is also a potential breast and ovarian cancer susceptibility gene. A novel allele was identified which has a tandem duplication of a 13 base pair sequence in the promoter region. Methods: We screened germline DNA from 352 breast cancer patients, 390 ovarian cancer patients and 256 normal controls to determine if the presence of either of these two alleles was associated with an increased risk of breast or ovarian cancer. Results: The duplication allele had a frequency of 0.34 in the normal controls. There was a nonsignificant decrease in the frequency of the duplication allele in breast cancer patients. The frequency of the duplication allele was significantly decreased in ovarian cancer patients. However, when malignant and benign tumours were considered separately, the decrease was only significant in benign tumours. Conclusion: The allele with the tandem duplication does not appear to modify breast cancer risk but may act as a low penetrance protective allele for ovarian cancer.
Resumo:
Twin studies offer the opportunity to determine the relative contribution of genes versus environment in traits of interest. Here, we investigate the extent to which variance in brain structure is reduced in monozygous twins with identical genetic make-up. We investigate whether using twins as compared to a control population reduces variability in a number of common magnetic resonance (MR) structural measures, and we investigate the location of areas under major genetic influences. This is fundamental to understanding the benefit of using twins in studies where structure is the phenotype of interest. Twenty-three pairs of healthy MZ twins were compared to matched control pairs. Volume, T2 and diffusion MR imaging were performed as well as spectroscopy (MRS). Images were compared using (i) global measures of standard deviation and effect size, (ii) voxel-based analysis of similarity and (iii) intra-pair correlation. Global measures indicated a consistent increase in structural similarity in twins. The voxel-based and correlation analyses indicated a widespread pattern of increased similarity in twin pairs, particularly in frontal and temporal regions. The areas of increased similarity were most widespread for the diffusion trace and least widespread for T2. MRS showed consistent reduction in metabolite variation that was significant in the temporal lobe N-acetylaspartate (NAA). This study has shown the distribution and magnitude of reduced variability in brain volume, diffusion, T2 and metabolites in twins. The data suggest that evaluation of twins discordant for disease is indeed a valid way to attribute genetic or environmental influences to observed abnormalities in patients since evidence is provided for the underlying assumption of decreased variability in twins.
Resumo:
STUDY OBJECTIVES: To determine whether cerebral metabolite changes may underlie abnormalities of neurocognitive function and respiratory control in OSA. DESIGN: Observational, before and after CPAP treatment. SETTING: Two tertiary hospital research institutes. PARTICIPANTS: 30 untreated severe OSA patients, and 25 age-matched healthy controls, all males free of comorbidities, and all having had detailed structural brain analysis using voxel-based morphometry (VBM). MEASUREMENTS AND RESULTS: Single voxel bilateral hippocampal and brainstem, and multivoxel frontal metabolite concentrations were measured using magnetic resonance spectroscopy (MRS) in a high resolution (3T) scanner. Subjects also completed a battery of neurocognitive tests. Patients had repeat testing after 6 months of CPAP. There were significant differences at baseline in frontal N-acetylaspartate/choline (NAA/Cho) ratios (patients [mean (SD)] 4.56 [0.41], controls 4.92 [0.44], P = 0.001), and in hippocampal choline/creatine (Cho/Cr) ratios (0.38 [0.04] vs 0.41 [0.04], P = 0.006), (both ANCOVA, with age and premorbid IQ as covariates). No longitudinal changes were seen with treatment (n = 27, paired t tests), however the hippocampal differences were no longer significant at 6 months, and frontal NAA/Cr ratios were now also significantly different (patients 1.55 [0.13] vs control 1.65 [0.18] P = 0.01). No significant correlations were found between spectroscopy results and neurocognitive test results, but significant negative correlations were seen between arousal index and frontal NAA/Cho (r = -0.39, corrected P = 0.033) and between % total sleep time at SpO(2) < 90% and hippocampal Cho/Cr (r = -0.40, corrected P = 0.01). CONCLUSIONS: OSA patients have brain metabolite changes detected by MRS, suggestive of decreased frontal lobe neuronal viability and integrity, and decreased hippocampal membrane turnover. These regions have previously been shown to have no gross structural lesions using VBM. Little change was seen with treatment with CPAP for 6 months. No correlation of metabolite concentrations was seen with results on neurocognitive tests, but there were significant negative correlations with OSA severity as measured by severity of nocturnal hypoxemia. CITATION: O'Donoghue FJ; Wellard RM; Rochford PD; Dawson A; Barnes M; Ruehland WR; Jackson ML; Howard ME; Pierce RJ; Jackson GD. Magnetic resonance spectroscopy and neurocognitive dysfunction in obstructive sleep apnea before and after CPAP treatment.
Resumo:
Objective: Preclinical and clinical data suggest that lipid biology is integral to brain development and neurodegeneration. Both aspects are proposed as being important in the pathogenesis of schizophrenia. The purpose of this paper is to examine the implications of lipid biology, in particular the role of essential fatty acids (EFA), for schizophrenia. Methods: Medline databases were searched from 1966 to 2001 followed by the crosschecking of references. Results: Most studies investigating lipids in schizophrenia described reduced EFA, altered glycerophospholipids and an increased activity of a calcium-independent phospholipase A2 in blood cells and in post-mortem brain tissue. Additionally, in vivo brain phosphorus-31 Magnetic Resonance Spectroscopy (31P-MRS) demonstrated lower phosphomonoesters (implying reduced membrane precursors) in first- and multi-episode patients. In contrast, phosphodiesters were elevated mainly in first-episode patients (implying increased membrane breakdown products), whereas inconclusive results were found in chronic patients. EFA supplementation trials in chronic patient populations with residual symptoms have demonstrated conflicting results. More consistent results were observed in the early and symptomatic stages of illness, especially if EFA with a high proportion of eicosapentaenoic acid was used. Conclusion: Peripheral blood cell, brain necropsy and 31P-MRS analysis reveal a disturbed lipid biology, suggesting generalized membrane alterations in schizophrenia. 31P-MRS data suggest increased membrane turnover at illness onset and persisting membrane abnormalities in established schizophrenia. Cellular processes regulating membrane lipid metabolism are potential new targets for antipsychotic drugs and might explain the mechanism of action of treatments such as eicosapentaenoic acid.